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With the operation of wireless sensor networks (WSNs), energy-constrained sensor nodes and inade-
quate energy constraint methods are becoming obsolete, as they reduce the efficiency of data transmis-
sion. The appearance of edge computing (EC) and causality graph provide a new opportunity for energy
fault analysis and assessment in WSNs. As a result, by selecting a reliable data transmission path and
averaging the energy consumption, we present an energy fault and consumption optimization (EFCO)
algorithm for solving the energy hole and consumption balance (EHCB) problem in wireless sensor net-
works with edge computing (ECWSNs). Specifically, we first build a novel four-layer network architecture
by using edge computing technology and causality graph theory. Then, the energy fault cost (EFC) in
ECWSNs is formulated as an optimization problem that is constrained by the energy allocation of relay
nodes. Furthermore, we propose a causal reasoning algorithm to deduce the single-value fault status
probability of relay nodes. Finally, we utilize version 2 of a network simulator (NS-2) to evaluate the fault
derivation and energy allocation efficiency of the EFCO algorithm in ECWSNs.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Wireless sensor networks (WSNs) have been integrated into
every corner of modern society, for example, in deep forest fire
warning, water pollution monitoring, vehicle speeding supervision,
and wildlife detection systems (Li et al., 2018). Building a high-
performance network is the main factor for ensuring the comple-
tion of sensor tasks. The main challenges of effective wireless
sensor networks are the fast energy consumption caused by the
large amount of transmitted data and the inability to detect faulty
sensor nodes in complex environments (Zhou et al., 2022). When a
faulty wireless sensor node is used as an effective relay node to
transmit data, there is a large amount of data packet loss and mul-
tiple retransmission problems, especially when the faulty node is
located in the path near the target node, which leads to network
energy consumption. Therefore, a reasonable energy consumption
strategy for faulty node diagnosis would prolong the life cycle of
wireless sensor networks, thereby improving the efficiency and
robustness of the network detection environment.

A causality graph is a method of obtaining causality expressions
and reasoning under dynamic uncertainty based on directed
graphs (Liu et al., 2018). The characteristics of information process-
ing are uniquely advantageous in the fault diagnosis of WSN pro-
cesses with complex structures (Bruni et al., 2002). A causality
graph expresses the causal mechanism with virtual independent
random events, quantifies it as the probability of random events
and the probability of causal relationships, and performs makes
logical reasoning to qualitatively determine the probability of
faults(Zhang, 2012). Edge computing (EC) gives edge entities more
powerful information processing abilities and content delivery
capabilities by pushing computation and storage from the central
cloud to the edge cloud (Guo et al., 2019). EC also provides an effi-
cient and low-latency support platform for service implementation
(Ma et al., 2021). We integrate EC technology intoWSNs to propose
a novel network architecture called an edge computing wireless
sensor network (ECWSN), which can highlight the advantages of
EC technology in intelligent reasoning networks.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2022.12.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jksuci.2022.12.005
http://creativecommons.org/licenses/by/4.0/
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Compared to the traditional WSN architecture, the ECWSN
architecture can better use powerful AI perception nodes to
achieve network status awareness and perform node fault reason-
ing, data analysis and processing, and other functions (Jain et al.,
2022). We call this kind of AI perception node an edge computing
server (ECS). The scheduling of energy consumption in ECWSNs is
the root cause of node faults (Kamal and Adouane, 2018). An ECS
can deduce the energy fault probability of ECWSNs based on the
real-time node operating status, which determines a reliable trans-
mission link (Li and Xu, 2019). On the other hand, an ECS can select
the relay nodes with the most appropriate energy allocation
through the perception of the global network status to avoid the
energy hole problem to the greatest extent possible (Li and Xu,
2019).

In this paper, we consider the energy holes and consumption
balance (EHCB) problem in ECWSNs. Our goal is to find reliable
relay nodes and identify the optimal energy allocation strategy
by using the established energy fault cost function. Furthermore,
the proposed scheduling strategy can avoid faulty nodes and bal-
ance energy allocation based on causal reasoning and EC technolo-
gies. Specifically, we first build a four-tier architecture for ECWSNs
to depict the EHCB problem. Second, we analyse the fault probabil-
ity of each node based on a causality graph constructed according
to ECWSN characteristics. Afterwards, the energy fault and con-
sumption optimization (EFCO) algorithm is proposed according
to the causality reasoning result of the available relay nodes.
Finally, we analyse the reasons for choosing version 2 of the net-
work simulator (NS-2) as simulation software, and the experimen-
tal results prove that the EFCO algorithm has a lower energy fault
detection efficiency and a higher reliable transmission ratio.

The contributions of this paper are summarized as follows.

� We formulate an energy fault cost model that characterizes the
multivalued failure probability states of perceptual nodes in
ECWSNs.

� We adopt a causal reasoning algorithm to convert the probabil-
ities of the multivalued fault status of a sensor node into a
single-valued fault status. Then, the Lagrangian duality mecha-
nism is used to characterize the energy fault cost optimization
model. The optimal value is used as a scale to solve the energy
hole problem.

� We propose an EFCO algorithm that minimizes the fault proba-
bility by selecting the optimal EC system and data transmission
path. Our EFCO algorithm not only guarantees the reliable
transmission of data but also balances the energy consumption
of sensing nodes in ECWSNs.

The remainder of this paper is organized as follows. Section 2
introduces the related research results. Section 3 provides the net-
work and systemmodel. Section 4 formalizes the EHCB problem. In
Section 5, the EFCO algorithm is presented. Section 6 evaluates the
performance of the EFCO algorithm. Finally, the conclusion is sum-
marized in Section 7.
Fig. 1. Edge computing wireless sensor networks (ECWSNs).
2. Related work

However, the existence of energy failure nodes in traditional
WSNs invalidates the routing algorithm. The research results in
Dong et al. (2019) and Zhu et al. (2019) address this problem.
The fairness cooperation algorithm (FCA) presented in Dong et al.
(2019) defines fairness as the proportion of shared resources occu-
pying the remaining resources, and it is used as the weight in the
optimization function to determine the cooperation strategy
(Zeng et al., 2019). The FCA transmits the node status to the ECS
in the current domain, which establishes a transmission path to
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satisfy the constraints of resource cooperation. However, this pro-
cess is based on the premise of a healthy network. This scheduling
strategy fails if energy hole phenomena occur in ECWSNs. The
adaptive multiservice network selection scheme (MSNS) in Zhu
et al. (2019) is designed to solve the heterogeneous network selec-
tion problem for multiservice users with different node statuses. It
combines the dynamic adaptability of fuzzy logic with near-
optimal multiattribute decision making. The MSNS algorithm
infers the transmission status of ECWSNs based on fuzzy logic the-
ory. However, this strategy does not consider the global optimal
network status, so the found path cannot select the appropriate
relay nodes, which results in an inefficient energy consumption
balance and reduces the life cycle of ECWSNs.

Although these routing algorithms can exploit the new idea of
using edge computing to improve the performance of data trans-
mission, these scheduling strategies are based on fault-free percep-
tion devices and average energy consumption. Therefore, these
algorithms cannot fundamentally solve the problems of energy
holes or the energy consumption balance. The above two strategies
inspire our pursuit of a reliable data transmission path with a min-
imum fault probability and reasonable energy allocation.
3. Network and system model

3.1. Network model

In a WSN, we deploy an ECS on a sensor with powerful AI com-
puting, storage capacity, and the largest remaining energy. The ECS
undertakes network fault analysis and the effective scheduling of
data transmission. This type of WSN is called an ECWSN. To con-
sume less energy by shortening the transmission distance of the
sensors in ECWSNs, we generally deploy the ECS in the centre of
the perceived node region. The region managed by the ECS is called
the edge computing system.

We divide the ECWSN architecture into four decoupled layers:
the transmission layer, control layer, application layer, and percep-
tion layer. Fig. 1 illustrates this layered structure. We use layer
transmission and perception for effective data transmission. Fault
analysis and data scheduling strategy formulation are performed
in the control layer. The application layer determines the specific
user requirements. The four-layer ECWSN architecture is described
in detail below.



Fig. 2. Causality reasoning graph.
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(1) Transmission Layer: Sensors with a larger energy fault may
form an energy hole, which causes data transmission failure in
ECWSNs. In addition, a higher level of area malfunction caused
by a faulty node can result in local network faults and even net-
work crashes (Zhang, 2018). Thus, the design of a transmission
architecture and the optimization of resource allocation among
the sensors in view of fault prediction and data scheduling are crit-
ical to network performance in data transmission.

(2) Control Layer: The sensors first send the transmission
requirements to the ECS, and then, the ECS develops the scheduling
strategy based on the node fault statuses. The data transmission
requirement is generally forwarded by the relay nodes, and the
control commands sent by the ECS are also transmitted by the
relay nodes. Therefore, a sudden node fault invalidates the entire
scheduling task in the ECWSN. The control architecture and fault
diagnosis and prediction among the sensors are constructed by
the ECSs.

(3) Application Layer: The ECS needs to satisfy the various
demands of network applications, and the ECS adopts the corre-
sponding scheduling strategy according to different applications.
These applications mainly include the perceived environment,
data transmission, fault diagnosis and prediction, and network
status monitoring. Thus, the design of the architecture in the
application layer is critical in speeding up the deployment of
new applications.

(4) Perception Layer:We need to consider various types of per-
ceived data in various complex environments. Since adjacent sen-
sor nodes have similar perceptual environments, these nodes
collect similar or identical redundant data, so eliminating redun-
dant data is an important process for saving network resources.
The design for storing unstructured data in the memory of sensors
is critical to the efficient management of the collected data.
Table 1
Event description.

Notation Description Valid value
range

X Node fault probability 0–20%
x1 Fault probability of the RF communication

module
0–30%

x2 Fault probability of the sensing module 0–30%
x3 Fault probability of the energy module 0–20%
x4 Fault probability of the computing and storage

module
0–30%

b11 Fault probability of sending data 0–30%
b12 Fault probability of receiving data 0–20%
b2 Error probability of perceptual data 0–50%
b3 Probability that the voltage is less than 1.9 V 0–10%
b41 Probability that the temperature is greater than

70 degrees Celsius
0–20%

b42 Degradation probability of the calculation speed 0–50%
3.2. System model

We consider an edge computing system with j sensors, repre-
sented by a set J ¼ f1;2; � � � ; jg, each of which has a sensing module,
an energy module, a computing and storage module, and a radio
frequency (RF) communication module. The ECWSNs have i edge
computing systems. When the data perceived by the sensing mod-
ule of the sensor need to be transmitted, the RF communication
module of the sensor sends a transmission requirement x to the
ECS of the current region. Then, the ECS selects the appropriate
relay nodes according to the real-time state of the ECWSNs and
sends the scheduling strategy information to the corresponding
devices.

There are four types of faults in sensors: sensing faults, energy
faults, computing and storage faults, and RF communication faults.
If the fault probability of the energy module is not within the effec-
tive value range, the sensor cannot perform the data transmission
tasks, which leads to energy hole phenomena. Therefore, we need
to choose a reasonable method to judge the mechanism for avoid-
ing the energy hole problem. A causality graph is a probability-
based knowledge representation method developed based on a
reliability network. Many examples have proven that a causality
graph can be effective at system fault diagnosis (Volpe et al.,
2012). The system model for node fault reasoning considered in
this paper is illustrated in Fig. 2.

We define the symbol for each element in the system model as
follows.

r Circle Node: x denotes a node event or a node event variable.
A node event variable takes an element of a set of mutually exclu-
sive node events. These mutually exclusive node events form the
complete sample space of node events. For a valid value range of
a node event variable, its fault probability does not exceed 30%.
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r Square Node: b represents a basic event or a basic event vari-
able. It is an independent way of connecting events or connecting
event variables. For a valid value range of a node event variable, its
fault probability does not exceed 50%.

r Directed Edge: p represents a connected event or connected
event probability. It allows an input event to cause or not cause a
corresponding output event. The valid value of a directed edge is
often obtained by expert subjective reliability or statistics.

In these definitions, the term variable represents a set of mutu-
ally exclusive events or an event vector or matrix, each of whose
member events is called an instance or a value of the correspond-
ing event variable. If the fault probability of a variable exceeds its
range of valid values, we consider this sensor the faulty node. The
fault probability of each module is adjusted to within the valid
value range. Table 1 lists some descriptions and valid value ranges
of nodes and basic events.

A basic event has no input, but it has at least one output for a
node event. A node event has at least one input and any number
of outputs. A directed edge can start with a basic event or a node
event, but it always points to a node event.

According to our definitions, x1 represents an RF communica-
tion fault in an ECWSN, so we can obtain

x1 ¼ p111b11

[
p121b12

[
p31x3

[
p41x4: ð1Þ

In the same way, sensing faults, energy faults, and computing
and storage faults are represented as x2; x3, and x4, respectively.
Thus, the node events are expressed as follows:
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x2 ¼ p22b2

[
p32x3

[
p42x4 ð2Þ

x3 ¼ p33b3 ð3Þ

x4 ¼ p414b41

[
p424b42

[
p34x3: ð4Þ

A sensor fault is a fault in one or more modules. Each node
event is composed of a sum of one or more basic events; a basic
event contributes to node event generation, and the connection
probability p determines the probability of the node event occur-
ring. Therefore, we can obtain the fault of the i-th sensor Xi.

Xi ¼ p1x1
[

p2x2 ð5Þ
Combining formulas (1), (2), (3), and (4) with (5), we can obtain

the following causality reasoning model for node faults:

Xi ¼ p1p111b11
S
p1p121b12

S
p2p22b2

Sððp1 þ p2Þp34p42

þðp1p31 þ p2p32ÞÞp33b3
Sðp1p41 þ p2p42Þp414b41Sðp1 þ p2Þp42p424b42:

ð6Þ

Assuming that one data transmission task requires m relay
nodes for completion, these sensor nodes should have a relatively
low fault probability to ensure data transmission. Therefore, we
must choose a reliable link for data transmission through an effec-
tive scheduling strategy.

Note that any ECS can communicate freely with other ECSs, and
the energy fault reasoning of sensors does not affect the analysis or
processing of the perceived data in ECWSNs. In addition, at least
one valid link can be found for each data transmission.

4. Problem formulation

To ensure reliable data transmission, we should avoid passing
through the energy hole area on the transmission path. Therefore,
the fault probability of the selected transmission path must be the
lowest. Energy hole phenomena occur due to faulty nodes and
uneven energy consumption in ECWSNs. We call this difficulty
the EHCB problem. ECWSNs consist of four layers, and the control
layer is responsible for node fault analysis and scheduling of per-
ceived data. The transmission layer transmits the data of the per-
ception layer to the destination node based on the different user
requirements proposed by the application layer and a strategy for-
mulated by the control layer.

According to the requirements of different applications, data
acquisition requires energy, sensing, and computing and storage
modules, and the network functions of fault diagnosis and data
transmission are implemented by energy, computing and storage,
and transmission modules. An energy module fault is a key factor
in evaluating node faults, and energy damage can cause the nodes
to lose all their functions. Therefore, Theorem 1 proves the rela-

tionship between the energy depletion probability pðeÞ
i and the ran-

dom fault probability pðrÞ
i of node i in an ECWSN:

Theorem 1. In energy fault analysis in an ECWSN, the energy

depletion probability pðeÞi of the i-th node is greater than the random

fault probability pðrÞi of node i, i.e., pðeÞi > pðrÞi .
Proof. See the proof in the appendix. h

The EHCB problem formulates the function of the energy fault
cost. Then, the proposed scheduling strategy ensures the reliable
transmission of data flows and maximizes energy savings in the
ECWSN. The optimization function of the energy fault cost can be
given by
360
OPT � 1 min
X
k2K

X
j2J
qkjFð

Xkj

~X
Þ; ð7Þ

subject to the requirements such that 8k 2 K and 8j 2 J,

C1 :
X
k2K

X
j2J

pðeÞ
kj > jKJjpðrÞ

max;

C2 :
X
k2K

X
j2J

~EðXkjÞ � jKJjEmin;

C3 : qkj 2 f0;1g;

ð8Þ

where Xkj represents the fault event of the j-th relay node in the k-

th edge computing system of the ECWSN and ~X is the relay node
that contains the most basic events. ~EðXkjÞ and Emin are the energy
consumption of the kj-th node and the minimum remaining energy
of a node in the available transmission path, respectively. kJ denotes
the set of relay nodes in a transmission path. The energy fault cost
function can be described as follows:

Fð~xÞ ¼ pð~xÞ1þe;0 < e < 1; ð9Þ
where ~x is an expression consisting of basic events and connection

events in the ECWSN. e ¼ ~EðXkjÞ
Emin

indicates the impact factor of the

node energy fault.
To convert the energy fault cost F to the fault probability func-

tion p, we need to transform expression x into the final cut set of
node events. The function of the energy fault cost F increases in
terms of Xkj, and the OPT-1 function is strictly convex.

When the energy depletion probability pðeÞ is less than the max-

imum value of the random fault probability pðrÞ
max on a data transmis-

sion path, one or more relay nodes are at risk of faults in an ECWSN.
Therefore, constraint C1 describes the fault probability condition. All
modules must have sufficient energy to ensure normal operation;
hence, constraint C2 indicates that the total energy consumption
of an effective transmission link cannot exceed theminimum energy
Emin of jKJj times. The selection scale of the effective relay nodes is
expressed in constraint C3, and the selected relay node has the low-
est fault probability and the appropriate energy consumption.

The optimization function (OPT-1) minimizes the energy fault
probability in an ECWSN by comparing the energy depletion prob-
abilities pðeÞs and by selecting the appropriate energy consumption,
thereby ensuring that all application needs of the users are met.
Constraint C3 is a discrete integer variable, and we reformulate this
constraint for the fault probability of node events as follows:

X
k2K

X
j2J
qkjpkj � jKJjpmax; ð10Þ

where pmax is the maximum fault probability, which a valid data
transmission path does not exceed.

The traditional optimization solution repeatedly calculates Xkj
~X
. ~X

is a complex causal reasoning expression. This situation increases
the time complexity of our proposed EFCO algorithm. Therefore,

we set ykj ¼ Xkj
~X
and rewrite the function OPT-1 to OPT-2 as follows:

OPT � 2 min
X
k2K

X
j2J
qkjFðykjÞ ð11Þ

subject to 8k 2 K;8j 2 J,X
k2K

X
j2J

pðeÞ
kj > jKJjpðrÞ

max ð12Þ

X
k2K

X
j2J

~EðykjÞ � jKJjEmin ð13Þ
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X
k2K

X
j2J
qkjpkj � jKJjpmax: ð14Þ

We adopt the Lagrangian dual method (Sl et al., 2021) to solve
the function OPT-2, and the optimization variable y� is determined.
The minimization function value Fðy�Þ is a metric for selecting a
reliable transmission path with average energy consumption in
an ECWSN.

5. Energy fault and consumption optimization algorithm

In this section, we first propose the causality reasoning algo-
rithm to deduce the energy fault probability pkj of all nodes in
the current edge computing system. Afterwards, the Karush–Kuh
n–Tucker (KKT) condition (Liu et al., 2019) of the minimization
function (OPT-2) is solved by the Lagrangian dual method. Finally,
we propose a reliable routing and energy allocation strategy to
address the EHCB problem.

5.1. Causality reasoning algorithm

To solve the optimization problem (OPT-2), we need to trans-
form the multivalue fault status of each module into the fault prob-
ability of the relay node. In the node causality graph, each status of
the basic event variable bij has a probability value. We first define
the occurrence probabilities of the different states of the event
variable, and then, the fault probability of the relay node on the
data transmission path is derived by Algorithm 1.

Definition 1 (Event status probability). Let event variable Vij (xij or

bij) consist of k
0 mutually exclusive states; then, the probability of

the k0-th state Vk0

ij occurring is wðVk0

ij Þ, with 0 < wðVk0

ij Þ < 1. The

probability of the k0-th state of event bij is wðbk0ij Þ, with

wðbk0ij Þ ¼ Pðbk0ij Þ.

Each node event has more than two fault state probabilities,
which makes it difficult to describe the fault condition of a
single-node event. For any multivalued state of the event variable,
there is always a corresponding single-valued fault probability,
which is obtained by considering all states of the basic event or
node event variable (Zhang, 2015). The reason for transforming
the multivalued states into a single-valued fault probability is to
obtain the probability of a connected event. This transformation
method is expressed in Assumption 1:

Assumption 1. Let each fault probability of the event variables (xij
or bij) be proportional to its occurrence probability.

ðVijÞ ¼
V1

ij

..

.

Vk0
ij

0
BBB@

1
CCCA..
.

pfV1
ijg

..

.

pfVk0
ij g

0
BBB@

1
CCCA..
.

wfV1
ijg

..

.

wfVk0
ij g

0
BBB@

1
CCCA ð15Þ

We set

uðVk0
ij Þ ¼

max
k0

wðVk0
ij Þ

XK 0

k0¼1

wðVk0
ij Þ

; ð16Þ

where uðVk0
i Þ denotes the probability distribution factor; then,
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uðVk0
ij Þ ¼

max
k0

pðVk0
ij Þ

XK 0

k0¼1

pðVk0
ij Þ

ð17Þ

where K 0 indicates the set of node fault states.

Each ECS is responsible for calculating the node fault probability
in the local region and storing the result in the storage space of the
ECS. The node fault probability serves as a basic metric for the
selection of a reliable transmission path.

If the fault probability of a node event is deduced by the use of
the traditional disjoint logical calculation, it greatly increases the
number of calculations because this derivation process is very
complicated, making it unsuitable given the limited resources in
ECWSNs. Therefore, we adopt Assumption 2 to simplify this calcu-
lation process. Moreover, Assumption 1 does not have a significant
impact on the calculation result of event fault probabilities in prac-
tical applications (Zhang et al., 2014).

Assumption 2. Assume that node event xi has one or more basic
events and that the relationship among the basic events is OR. If a
basic event can provide probability wðxiÞ for the occurrence of node
event xi, then the value of wðxiÞ is equal to the individual
probability pðxiÞ of node event xi based on the hypothesis stating
that other basic events do not occur. Otherwise, the incidence
probability of node event xi is equal to the fault probability sum for
all linked basic events.

See (Zhang, 2015) for the solution to the final cut set expression
in Algorithm 1. B is the set of basic events bij.

Algorithm 1. Causality reasoning algorithm
1: Require: Basic events bij, connection probabilities pij.
2: while fBg–£ do
3: Send the statuses of bij and pij for satisfying the user
requirement to the i-th ECS.

4: Transform the multivalued probabilities of basic events
into the single-valued fault probabilities pðbijÞs via
Assumption (1);

5: if ~Ei � Ex then
6: Calculate the first-order cut set of the node event
variables by solving Eqs. ()()()()(1)–(4);

7: Calculate the final cut set expression of the node event
variables;

8: Extend the final cut set expressions of the node event
variables to the state matrix forms;

9: Calculate the fault probability of the node events
based on Assumption (2);

10: else
11: i ¼ iþ 1;
12: end if
13: Save the node fault probabilities pðXiÞs in the i-th ECS;
14: end while.
5.2. Lagrangian dual approach

We first use the Lagrangian dual decomposition approach
(Chiang et al., 2007) to convert the minimization function (OPT-
2) into an unconstrained optimization function (Tubishat et al.,



G. Li, Y. Tong, G. Zhang et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 357–367
2021). Afterwards, the Lagrangian multipliers a�; b� and c� are
derived by the steps below.

To convert the objective function (OPT-2) into an unconstrained
optimization expression, we introduce Lagrangian multipliers a; b
and c to relax constraints ()()()(12)–(14), so we can obtain

Lðy;a; b; cÞ ¼
X
k2K

X
j2J
qkjFðykjÞ

þakjð
X
k2K

X
j2J

pðeÞ
kj � jKJjpðrÞ

maxÞ

þbkjðjKJjEmin �
X
k2K

X
j2J

~EðykjÞÞ

þckjðjKJjpmax �
X
k2K

X
j2J
qkjpkjÞ:

ð18Þ

Eq. (18) can be solved by the following step:

max
a�0;b�0;c�0

dða;b; cÞ: ð19Þ

The dual function (18) can be abbreviated as follows:

dða;b; cÞ � min Lðy;a;b; cÞ: ð20Þ
Replacing Eqs. (18) and (20) yields the following Eq. (21):

dða;b; cÞ ¼ min½d0 þ dkjðykj;a;b; cÞ	; ð21Þ

where

d0 ¼ akj

X
k2K

X
j2J

pðeÞ
kj þ jKJjbkjEmin þ jKJjckjpmax ð22Þ
dkjðykj;a;b; cÞ ¼
X
k2K

X
j2J
qkjFðykjÞ � jKJjakjp

ðrÞ
max

�bkj

X
k2K

X
j2J

~EðykjÞ

�ckj
X
k2K

X
j2J
qkjpkj:

ð23Þ

We adopt the derivation method for Eq. (24) to solve Eq. (23).

@ðdkjðykj;a; b; cÞÞ
@ðpkj;

~EkjÞ
¼ 0 ð24Þ

The optimal energy fault and allocation solution is derived by
using Eqs. (23) and (24).

y�kj ¼
X
k2K

X
j2J
qkjðpekj � c�Þ � jKJja� � b� j I j ð25Þ

We update the recursive form of the optimal Lagrangian multi-
plier iteratively as follows:

aðt þ 1Þ ¼ ½aðtÞ � s1ð
X
k2K

X
j2J

pðeÞ
kj � jKJjpðrÞ

maxÞ	
þ ð26Þ
bðt þ 1Þ ¼ ½bðtÞ � s2ðjKJjEmin �
X
k2K

X
j2J

~EðykjÞÞ	
þ ð27Þ
cðt þ 1Þ ¼ ½cðtÞ � s3ðjKJjpmax �
X
k2K

X
j2J
qkjpkjÞ	

þ
; ð28Þ

where t is the number of iterations and s1; s2 and s3 are the iteration
step sizes. The optimal Lagrange multipliers ða�;b�; andc�Þ are calcu-
lated by repeating the iterative process described above (Jalil Piran
et al., 2020). y� is the optimal solution for the energy fault and allo-
cation in the ECWSN.
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5.3. Energy fault and consumption optimization algorithm

To ensure reliable data transmission from the perception layer
to the cloud centre, we need to select the transmission link with
the lowest fault probability. Therefore, the EFCO algorithm is pro-
posed in view of the fault reasoning results of Algorithm 1 in
ECWSNs. The EFCO algorithm considers two aspects: the energy
status and fault probability of the relay node.

In the first step, each ECS calculates the node fault probability of
the current edge computing system based on Algorithm 1. To
establish the four-tier architecture of ECWSNs and save valuable
resources in the ECS, the optimal numbers of edge computing sys-
tems are calculated based on Theorem 2. Afterwards, the number
of perceptual nodes belonging to each ECS does not exceed b n

Oopt
c,

and ~Ex is the energy consumption for the transmission of data flow
requirement x. In this step, each relay node sends the node status
to the ECS in the current system, and Ti is the set of node fault
probabilities. It is assumed that each data transmission has suffi-
cient energy to satisfy its requirements in an ECWSN.

Theorem 2. In an ECWSN, the optimal number of edge computing

systems Oopt is equal to
ffiffiffiffiffiffiffi
ns
2pu

q
D
d2
.

Proof. See the proof in the appendix. h

The second step is to solve the energy fault cost (OPT-2) prob-
lem in ECWSNs. We first derive the optimal value y� and the dual
vectors a�; b�andc� based on the Lagrangian dual method; then,
the ECS sends these values to other ECSs to determine the energy
fault cost Fðy�Þ. The optimal function Fðy�Þ is the criterion for the
selected path with the lowest fault probability and average energy
consumption.

The optimal path with the minimum energy fault cost Fðy�Þ is
selected by the set Tj in the third step. The smaller the value of
the energy fault cost Fðy�Þ is, the more reliable the selected path
and the more efficiently the perceptual data can be transferred to
the destination node. y� is the minimal energy fault probability
for satisfying the constraints in the ECWSNs, and the energy fault
cost Fðy�Þ and constraints concentrate data transmission in nodes
with smaller energy fault probabilities. L is the number of reliable
transmission paths. Finally, the network status in the ECWSNs is
updated.

We summarize the process of the EFCO algorithm in Algorithm 2.

Algorithm 2. Energy fault and consumption optimization (EFCO)
algorithm

Input: Data transmission requirement x, energy status Ekj in
the kj-th sensor, network real-time status.

Output: The path with the minimal energy fault probability.
/*Step 1: Determine the energy fault probability for each

node in the edge computing system */
1: Calculate Oopt by Theorem (2);
2: for k ¼ 1 to Oopt do
3: for j ¼ 1 to b n

Oopt
c do

4: Select the node with an AI chip and the highest energy
Emax as the ECS;

5: if Eij � ~Ex then
6: Calculate the node fault probability pkj by using
Algorithm 1;

7: Place the node fault probability pkj into set Tk;
8: end if
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9: j ¼ jþ 1;
10: end for
11: Save set Ti in the k-th ECS;
12: k ¼ kþ 1;
13: end for

/*Step 2: Solve the optimization function (OPT-2) */
14: for j ¼ 1 to b n

Oopt
c do

15: Obtain the optimal solution y� and the dual variables
a�; b�; andc� by solving Eqs. ()()()()(25)–(28), respectively;

16: Broadcast y�;a�; b�; c� to other ECSs;
17: j ¼ jþ 1;
18: Obtain the optimal objective function (OPT-2) through

the dual expression (18);
19: end for

/*Step 3: Select the path with the minimal fault
probability*/

20: for k ¼ 1 to Oopt do
21: for j ¼ 1 to b n

Oopt
c do

22: Find all the nodes in Tk to satisfy data transmission
requirement x;

23: if L � 2 then
24: j ¼ jþ 1;
25: Select the path with the minimum function of the

energy fault cost Fðy�Þ;
26: else
27: Deliver the path to set Tj;
28: end if
29: end for
30: k ¼ kþ 1;
31: end for
32: Send the control commands for data transmission to the

corresponding devices.
Table 2
Parameter settings.

Parameter Description

Packet Transmission Rate 250 kbit/s
Timeout 864 ls
System Radius r 50 m
Communication Distance 30 m
s 10 pJ=bit=m2

u 0.0013 pJ=bit=m4

d 1.6
n 1.5
Simulation Time 20 min
5.4. Time complexity analysis

To prove the efficiency of the EFCO algorithm, we analyse the
time complexity of the EFCO algorithm below.

First, the EFCO algorithm calculates the node fault probability in
accordance with the energy consumption requirements, and the
procedure takes OðOoptb n

Oopt
cÞ lgn time, where Ooptb n

Oopt
c lgn � n. Sec-

ond, it takes Oðb n
Oopt

cÞ time to derive the optimal energy fault cost

Fðy�Þ. Finally, the EFCO algorithm needs to select the optimal trans-
mission path with the minimum energy fault cost function Fðy�Þ.
The transmission path needs to compare Fðy�Þ reliable paths in
every edge computing system, and there are Oopt edge computing
systems in the ECWSNs; this process takes OðOoptb n

Oopt
cÞ lgL time.

Then, the EFCO algorithm sends the operation results and
requested packets by employing OðOoptb n

Oopt
cÞ time, and this step

takes OðOoptb n
Oopt

c lgLþ Ooptb n
Oopt

cÞ time. Therefore, the total time

complexity of the EFCO algorithm is as follows:

O ðOoptb n
Oopt

c þ b n
Oopt

c lgnþ Ooptb n
Oopt

c lgL
þOoptb n

Oopt
cÞ

� Oð3Ooptb n
Oopt

c lgnþ b n
Oopt

cÞ
� Oð3nþ b n

Oopt
cÞ:

ð29Þ

Note that the complexity of the EFCO algorithm is linear in the
number of perceptual nodes n and the number of edge computing
systems Oopt; the time complexity is much lower if the values of n
and Oopt are much smaller. Therefore, the EFCO algorithm is time-
efficient owing to the lower time complexity in ECWSNs.
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6. Performance evaluation

In this section, we first describe the choice of network simula-
tion software and the setting of simulation parameters. Then, we
test the degree of fit between the simulation results and theoretical
results of our algorithm. Finally, we compare the performance of
our algorithm and with the performances of several benchmark
algorithms in terms of the fault distribution ratio (FDR) and reli-
able transmission ratio (RTR).

6.1. Simulation environment and setting

To better verify the performance of the proposed EFCO algorithm,
we must select appropriate simulation software to deploy the net-
work and effectively predict the failure of wireless sensor nodes in
the ECWSNs. NS-2 uses the split object model mechanism to separate
the simulation script from the protocol implementation. The archi-
tecture is clear. The simulation script is written by Tcl, and the pro-
tocol is implemented by C++. Therefore, NS-2 has the advantages of
a high C++ running speed and no compilation required for Tcl inter-
pretation and execution(Hussain et al., 2020). Although version 3 of
the network simulator (NS-3) has rich simulation resources and
updates quickly in the physical layer, compared to 5G, millimetre
wave technology, the Internet of Vehicles and other fields, it is easier
for NS-2 to simulate the data transmission process in terms of the
design of network construction and routing scheduling algorithms
in ECWSNs. Therefore, we implement the EFCO algorithm by using
NS-2 to evaluate its performance (Phillips and du Plessis, 2021).

Small-scale and large-scale simulation monitoring areas are set
to 800 m by 800 m and 3000 m by 3000 m with 50 to 500 percep-
tual nodes, respectively. An ECS is responsible for fault analysis and
energy allocation of b n

Oopt
c nodes. The radius of each edge computing

system is r. Assume that the remaining energy of the perceptual
nodes is expressed by three statuses: 100%, 75%, and 50%. Table 2
lists the experimental parameter settings in the experiment.

6.2. Small-scale experiments

In this subsection, we use small-scale experiments to verify the
network survival ratio (NSR) and fault reasoning error ratio (FRER)
based on the different ECSs. In addition, the number of ECSs Oopt is
determined by the network parameter settings and Theorem (2).
The network distribution topology is shown in Fig. 3.

It is assumed that the ECWSNs generate energy holes as the
experimental time increases. Energy holes are caused by dead sen-
sor nodes that are exhausted. Fig. 4 shows that the node survival
ratio in the simulation results essentially matches the theoretical
results. This experiment proves that our EFCO algorithm is consis-
tent with the actual network operation status.

To verify the correctness of Theorem (2) in deriving the number
of ECSs, we use the simulation in Fig. 5 to prove the range of the
FRER on the edge computing server ratio (ECSR) in ECWSNs. The
FRER is defined as follows:



Fig. 3. Small-scale topology of ECWSNs.

Fig. 4. Comparison of the node survival ratios.

Fig. 5. Comparison of the fault reasoning error ratios.
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Definition 2 (Fault Reasoning Error Ratio). The fault reasoning
error ratio FRER is defined as the proportion of erroneous reasoning
results to all results of the EFCO algorithm in the process of fault
reasoning in ECWSNs.
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The FRER reflects the efficiency of energy fault reasoning in
ECWSNs. The smaller the FRER is, the lower the level of energy
fault reasoning, and vice versa.

Employing an appropriate number of ECSs saves network
resources and reduces the fault ratio of data transmission. Fig. 5
shows that the FRER decreases rapidly when the ECSR increases,
and the FRER decreases to 0 when the ECSR increases to 8%. The
reason is that this ECSR is sufficient to support data transmission
in ECWSNs; a higher ECSR increases the network device costs,
and a lower ECSR reduces the data transmission efficiency in
ECWSNs. This ECSR is consistent with Theorem (2). Moreover,
the simulation results are consistent with our theoretical results.

6.3. Comparison of the fault distribution ratio

In this subsection, we first define the FDR, and then, we com-
pare the FDRs of our EFCO algorithm, the FCA (Dong et al., 2019)
and the MSNS algorithm (Zhu et al., 2019) for the fault node ratio.

Definition 3 (Fault Distribution Ratio). The fault distribution ratio
FDR is defined as the proportion of the sum of the absolute values
of the probability distribution factor differences in different nodes
to the total fault probability in the ECWSNs, i.e.,
FDR ¼

XNopt

i¼1

Xb n
Nopt

c

j¼1

juðVijÞ �uðViðjþ1ÞÞj

Xn
i¼1

uðViÞ
: ð30Þ

b n
Nopt

c denotes the optimal number of edge computing systems, and

uðVijÞ is the probability distribution factor of the i-th perception
node in the j-th edge computing system.

The FDR reflects the level of node fault detection in ECWSNs.
The larger the FDR is, the smaller the level of node troubleshooting,
and vice versa.

We divide the perception node topology into the two statuses of
uniform distribution and random distribution and distribute the
fault nodes with different proportions to the ECWSNs. A uniform
distribution means that the perception nodes are evenly placed
in the ECWSNs, and a random distribution has unevenness in node
placement. Fig. 6(a) shows that the FDR of a random distribution is
much higher than the FDR of a uniform distribution. The reason is
that the uniformly distributed energy consumption is relatively
balanced during the operation of the EFCO algorithm in ECWSNs,
which makes the difference between the derivation results of the
fault probability factor relatively small, and the randomly dis-
tributed perception nodes inevitably experience energy hole phe-
nomena, which causes a large gap with respect to the energy
consumption of perception nodes in ECWSNs. Therefore, this
explains the relatively large difference in the fault probability
factor.

We define the EFCO algorithm that adopts Algorithm 1 and the
energy fault cost minimization method as the nondiagnostic strat-
egy and nondeoptimized strategy. Accordingly, the EFCO algorithm
with the fault reasoning algorithm and energy fault cost function
is the optimal strategy. Fig. 6(b) shows that the FDR of the optimal
strategy becomes smaller than the FDR of the nondiagnostic and
nonoptimized strategies as the fault node ratio increases. For this
reason, the EFCO algorithm comprehensively considers the fault
nodes existing in ECWSNs and the optimal fault cost. However,
the nondiagnostic strategy may select the fault nodes as the relay
nodes. Therefore, the transmission path becomes an invalid link.
The nonoptimized strategy cannot select the optimal transmission
path, which results in uneven energy consumption.



Fig. 6. The fault distribution ratio (FDR) comparison.
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Fig. 6(c) shows a comparison of the FDRs of the EFCO algorithm,
FCA, and MSNS algorithm. Our EFCO algorithm has a lower FDR
than the other two routing algorithms. This is because the EFCO
algorithm can determine the faulty nodes and select the relay
nodes with the optimal energy consumption. The FCA does not
judge the faulty nodes in the ECWSNs, which causes the ECS to
incorrectly select the relay nodes. Although the MSNS algorithm
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can use the ECS to select the data transmission link, it does not
comprehensively consider the global energy optimization objec-
tive and the energy hole problem caused by the faulty perception
nodes, which results in lower energy allocation efficiency in
ECWSNs.

6.4. Comparison of the reliable transmission ratio

In this subsection, we adopt the RTR to evaluate the data
scheduling efficiency of the EFCO algorithm in ECWSNs. The RTRs
are compared by different distribution mechanisms and different
strategies as the simulation time increases. Furthermore, we com-
pare the RTRs of the EFCO algorithm and other baseline algorithms.

Definition 4 (Reliable Transmission Ratio). The reliable transmis-
sion ratio RTR is defined as the proportion of the successfully
transmitted packets to the sum of the received packets in the
ECWSNs, i.e.,
RTR ¼

XNopt

i¼1

ðYi þ
Xb n
Nopt

c

j¼1

ðYij �Yijðiþ1Þ ÞÞ

Xn
i¼1

Yi

; ð31Þ

where Yi indicates the forwarded packets in the i-th perception
node.

We take the RTR as the metric for the transmission efficiency of
packets in ECWSNs. The larger the RTR is, the higher the transmis-
sion efficiency, and vice versa.

Fig. 7(a) shows the RTR comparison between a uniform distri-
bution and random distribution as the simulation time increases.
The RTR of the uniform distribution is higher and more stable than
the RTR of the random distribution. The more even the node distri-
bution is, the more balanced the energy consumption in the
ECWSNs, and the data transmission efficiency is higher given the
lower probability of node faults. With the continuous operation
of the EFCO algorithm in ECWSNs, energy holes appear in the ran-
dom distribution method, which causes a large number of packet
loss and retransmission problems during data processing. There-
fore, the RTR of the random distribution exhibits jitter in the begin-
ning. Through the node fault analysis of the EFCO algorithm, the
data transmission efficiency is gradually improved and tends to
stabilize with increasing simulation time.

In addition, we contrast the RTRs of the nondiagnostic strategy,
nonoptimized strategy, and optimal strategy in ECWSNs with
increasing simulation runtime. Fig. 7(b) shows that the optimal
strategy has a higher RTR than the other strategies, and the RTR
results of all strategies decrease at the beginning of the simulation.
The reason is that the EFCO algorithm needs to analyse the faulty
node and select a reliable transmission path according to the
real-time status of the ECWSNs, which affects effective data trans-
mission to a certain extent. In addition, the nondiagnostic strategy
cannot effectively judge the fault status of the perception node,
and the transmission path may be incorrectly selected. Therefore,
the data transmission performance of the nondiagnostic strategy
is worse than that of the nonoptimized strategy.

Fig. 7(c) compares the RTRs of the EFCO algorithm, FCA, and
MSNS algorithm. The proposed EFCO algorithm has the best RTR
results in this simulation. This is because the EFCO algorithm can
accurately determine the faulty nodes through the strong comput-
ing power of the ECS in ECWSNs, and the EFCO algorithm can select
the optimal transmission path according to the energy fault cost.
The MSNS algorithm does not select the optimal transmission link



Fig. 7. Reliable transmission ratio (RTR) comparison.
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according to the energy consumption status of the sensors, which
results in uneven energy consumption by the ECWSNs and reduces
the reliable data transmission efficiency. The FCA cannot accu-
rately calculate the statuses of the faulty nodes, which blocks the
FCA scheduling strategy.
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7. Conclusion and future work

In wireless sensor networks, the main challenge of the EHCB
problem is to select a reliable data transmission path based on ana-
lysing failed nodes and averaging the energy consumption of relay
nodes. Therefore, we first build a novel four-tier architecture for
ECWSNs by merging edge computing technology and the concept
of causality graphs. Second, we propose the minimization function
of the energy fault cost by using the formulated EHCB problem,
which is constrained by the average energy allocation in ECWSNs.
Then, the minimized value of the energy fault cost is determined
by utilizing the Lagrangian dual decomposition approach. Further-
more, we propose an EFCO algorithm to solve the EHCB problem in
ECWSNs. Finally, we implement the EFCO algorithm in NS-2 and
evaluate its performance in terms of the fault distribution rate
and reliable transmission ratio.

For future work, the plan is to find the optimal critical value of
the predicted frequency of faulty nodes in the ECWSNs. If the pre-
dicted frequency of the fault node is greater than the critical value,
the network status will be monitored in real time; otherwise, the
fault wireless sensor node will not be effectively judged, and data
packet loss or network congestion may occur. In addition, we seek
and judge the effectiveness of the fault node judgement strategy of
data transmission equalization, further optimize the energy con-
sumption and prolong the life cycle in ECWSNs.
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Appendix A. Proof of theorem 1

The pðeÞ
i values hold by the proof in Sediyono et al. (2022):

pðeÞ
i ¼ 1� e

� 1

Eð0Þ
i

=EðcÞ
i

ti
; ð32Þ

where Eð0Þ
i and EðcÞ

i represent the initial energy and energy consump-
tion of node i, respectively. ti is the running time of node i.

We use the energy consumption model of wireless communica-
tion provided in Hu et al. (2016). The energy consumed by a node
over a distance d for transmitting l bits of data is the sum of the
energy consumed Etx by the signal transmitting circuit and the sig-
nal amplifying circuit.

Etx ¼ Eelec:lþ eamp:l:d
2 ð33Þ

The consumption energy Erx of the node for receiving l bits of
data is calculated by Eq. (34).

Erx ¼ Eelec:l ð34Þ
Then, the total energy consumption EðcÞ

i of node i can be
expressed in the following form:

EðcÞ
i ¼ Etx þ Erx ¼ 2Eeleclþ eampld

2
: ð35Þ

Assuming that n nodes are evenly dispersed in the 2-
dimensional bounded monitoring area G (area A), the probability
that a node falls within the circular domain D with the communi-
cation distance d as the radius is as follows:

P ¼
Z Z

D
f ðx; yÞdxdy ¼ pd2

A
: ð36Þ

In addition, the relationship between the node transmission

distance d and the node degree ~k is as follows:
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k; ¼ n:P ¼ n:pd2
=A: ð37Þ

We can obtain the relationship between the energy value EðcÞ
i of

node i and its degree ~k by substituting Eq. (37) into Eq. (36) and
then substituting Eq. (32) to obtain the energy depletion of proba-

bility node i described by node degree ~k and running time t.

pðeÞ
i ¼ 1� e�ðaþb~kÞti ; ð38Þ

where a ¼ 2Eelec l

Eð0Þ
i

and b ¼ eamplA

npEð0Þ
i

.

Because the random fault of node pðrÞ
i is caused by environmen-

tal damage from the sparse network, the node is characterized by
being isolated and lost in the operating environment of ECWSNs,
and its probability has an exponential relationship with the node

degree ~k (Chu et al., 2019).

pðrÞ
i ¼ e�

~ki ð39Þ
We define the difference ~p between the energy depletion prob-

ability pðeÞ
i and the random fault pðrÞ

i in the i-th node. Then, we cal-
culate the first-order derivative of ~p with respect to the node

degree ~ki.

@~p

@~ki
¼ ðabti þ ~kib

2t2i Þe�ðaþb~kÞti þ e�
~ki > 0 ð40Þ

Therefore, pðeÞ
i is a monotonically increasing function for ~ki, i.e.,

pðeÞ
i > pðrÞ

i .p
This completes the proof.
Appendix B. Proof of theorem 2

The radius of the edge computing system is r ¼ Dffiffiffiffiffi
pO

p , with q ¼ 1
ðD2O Þ

(Nakagaki et al., 2008); then, the energy consumption requirement
for data transmission with transmission distance d is

Eðd2Þ ¼ q
R 2p
h¼0

R Dffiffiffiffi
pO

p

r¼0 r
2drdh

¼ qD4

2pO2

¼ D2

2pO :

ð41Þ

Thus, we can obtain Eq. (42) from Eq. (35) in Theorem (2):

EðcÞ
i ¼ l�eþ lseðd2Þ: ð42Þ
Then, the energy consumed by the ECWSNs is as follows:

Eall ¼ OE

¼ lðnEþ nud4 þ nEþ ns D2

2pOÞ:
ð43Þ

We find partial derivatives for O and obtain the optimal number
of edge computing systems.

Oopt ¼
ffiffiffiffiffiffiffiffiffiffi
ns
2pu

r
D

d2 ð44Þ

This completes the proof.
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