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ConViTML: A Convolutional Vision
Transformer-based Meta-Learning Framework for

Real-Time Edge Network Traffic Classification
Lu Yang, Songtao Guo, Senior Member IEEE, Defang Liu, Yue Zeng, Xianlong Jiao, Yuhao Zhou

Abstract—Traditional traffic classification methods struggle to
identify emerging network traffic due to the need for model
retraining, which hampers the real-time response of deployed
edge devices. Furthermore, emerging network traffic samples are
often scarce, traditional methods often treat a session as a single
image, thereby overlooking essential structural features. These
factors can result in poor generalization ability of the trained
model. To overcome these challenges, we propose ConViTML
(Convolutional Vision Transformer-based Meta-Learning), a real-
time end-to-end network traffic classification framework that
employs meta-learning to avoid model retraining. We propose
a novel feature extraction network, Convolutional Visual Trans-
former (ConViT), merging Convolutional Neural Network (CNN)
and Visual Transformer (ViT). ConViT can directly extract
low-dimensional discriminative features containing basic and
structural features of the session, which is vital for improving
detection accuracy and accelerating convergence in a data-scarce
environment. Furthermore, we employ a Packet-based Relation
Network (PRN) to analyze the matching degree of support
samples and query samples. Therefore, accurate classification in
novel traffic identification tasks can be achieved with just a few
labeled samples, eliminating extensive data collection and labeling
operations. Finally, we replace various feature extractors and
compare our approach with the classic meta-learning framework
Relation Network (RelationNet). Extensive experimental results
demonstrate that ConViTML outperforms others with various
performance indicators.

Index Terms—Meta-learning, network traffic classification,
edge computing, visual transformer.

I. INTRODUCTION

With the continuous emergence of new industrial applica-
tions, the real-time traffic of the backbone network of the
Industrial Internet of Things (IIOT) shows an explosive growth
trend. It not only brings great difficulties to network service
quality assurance but also to network security management
[1]–[3]. Traditional cloud data center networks are difficult to
meet the real-time, security and reliability requirements of IIoT
for massive data transmission and processing. Edge intelli-
gence is a promising technology in which endpoint devices can
send only the information needed for cloud computing instead
of raw data. It helps reduce the cost of cloud infrastructure
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connectivity and data transmission [4]–[6]. Then again, moni-
toring and managing network traffic can provide fast channels
for priorities by categorizing applications, which improves the
quality of network service. Moreover, it can identify malicious
traffic and realize network security management, which is
of great significance for network operation and maintenance
management. Thus deploying network traffic classification
services on edge nodes can quickly make decisions and trigger
appropriate management actions.

In general, network traffic classification methods mainly in-
clude port-based [7], payload-based, Machine Learning-based
(ML-based), and Deep Learning-based (DL-based) methods
[8]. However, due to the widespread adoption of dynamic
port technology and the increasing demands for network
performance, the progress of port number-based and DPI
methods has been impeded [9]. Classical ML-based meth-
ods are based on that the traffic characteristics generated
by different types of applications is variable, such as Inter-
Arrival-Time (IAT), flow duration, and other network flow
features. However, these methods often rely on manual feature
design to determine which feature set is most effective for
the classification of network traffic in different sub-domains.
This limitation restricts their generality. Methods combined
with Deep Learning (DL) have become mainstream [10], [11].
Unlike traditional ML-based classification methods which are
based on manual feature extraction, DL-based classification
methods utilize a large number of labeled traffic samples
(preprocessed TCP/UDP bidirectional flows) and automati-
cally extract relevant features [12]–[15]. This enables end-to-
end traffic classification, where raw network traffic serves as
input and the output is the corresponding category label. This
approach partially addresses the problem of manual feature
design.

However, there are still several limitations and challenges
for the practical deployment of DL models. Firstly, due to the
low frequency of malicious attacks, obtaining malicious net-
work traffic samples is more challenging compared to normal
traffic samples. This leads to an imbalanced data distribution
for different types of network traffic [16]. Furthermore, the
emergence of unknown network threats, such as Advanced
Persistent Threats (APTs) and zero-day vulnerabilities, ap-
pears to be never-ending [17]. These emerging threats lead
to constantly evolving challenges in traffic classification and
detection. Traditional DL methods heavily rely on massive
amounts of data. Insufficient training samples can result in
serious overfitting. Moreover, when using a trained model to
identify novel traffic, the accuracy may drop significantly [18].
For edge devices where trained models are deployed, han-
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dling this situation becomes a significant challenge. The need
for model updates requires substantial computing resources
and a large amount of storage to accommodate large-scale
labeled training data, while edge devices typically have limited
resources such as CPU and memory [19]. Additionally, the
process of collecting and labeling novel traffic data is time-
consuming and labor-intensive. As a result, edge devices are
unable to quickly identify novel attacks, leading to significant
security risks.

Meta-learning has been viewed as a promising solution for
enabling models to learn latent patterns in data with just a
few training examples. The key to meta-learning is to learn an
embedding network capable of transforming raw inputs into
appropriate representations. These representations can effec-
tively capture the underlying correlations in both the support
and query sets, empowering the model to swiftly generalize
to new tasks [20]. Introducing meta-learning brings several
notable benefits. Firstly, it achieves satisfactory performance
on new tasks with a minimal number of labeled examples,
avoiding the labor-intensive process of data collection, clean-
ing, and labeling. Additionally, there is no requirement to
retrain the model, and edge devices can promptly identify
novel attacks, ensuring system security. These advantages
collectively contribute to the practical deployment of network
traffic identification systems in edge environments.

Meta-learning has garnered significant attention in various
image recognition domains, but its application in network
traffic classification is still limited. In the context of meta-
learning with limited training samples, efficiently extracting
discriminative information through task-based embeddings be-
comes crucial. However, most existing studies tend to directly
convert raw traffic data into images and use Convolutional
Neural Networks (CNN) to extract spatial features [18], [21],
[22]. Furthermore, traditional global pooling operations in
CNN may lead to the loss of valuable local information.
Network traffic flows are typically composed of interconnected
data packets arranged in chronological order, and the afore-
mentioned methods fail to capture the temporal relationship
between packets. Some researchers have attempted to combine
CNN and Long Short-Term Memory (LSTM) to jointly extract
spatio-temporal features [23], [24]. Nevertheless, this approach
demands considerable computing resources and memory.

To address the aforementioned challenges, we propose a
lightweight real-time end-to-end network traffic classification
framework, ConViTML (Convolutional Vision Transformer-
based Meta-Learnin), which is based on Visual Transformer
(ViT) and CNN. This framework facilitates the rapid identifi-
cation of novel traffic at the network edge without the need
for retraining. Our method involves several key steps. Firstly,
we preprocess the raw traffic data by converting each packet
into a fixed-size grayscale image. The resulting sequence of
grayscale images corresponds to the sequence of data packets.
Then, we utilize a single-layer CNN to extract shallow features
from packets, which are treated as packet-level basic features.
To prevent the loss of valuable local information caused by
multiple global pooling operations, we incorporate ViT, which
effectively captures task-related features while suppressing
irrelevant ones. To capture the relationship between packets,

we treat each packet as a patch, and apply ViT to extract
the sequence structure features of traffic while preserving
the basic features of the individual packets. Additionally, we
design a Packet-based Relation Network (PRN) to measure the
similarity between query samples and support samples. This
module calculates the similarity between each corresponding
data packet, considering packets as individual units, and
computes the average relation score as the final metric for
classification.

In summary, the contributions of our work can be summa-
rized as follows:

• We propose an end-to-end traffic classification frame-
work for edge environments called ConViTML. In the
ever-changing edge network environment, this method
can realize the classification of out-of-distribution traffic
samples with a small number of support samples without
retraining the original model.

• We propose a novel feature extraction model called
ConViT, which helps reduce redundant information and
enables fast inference. The model can extract low-
dimensional basic features and structural features in par-
allel, and the learned mixed features are more discrimi-
native.

• We propose the PRN that conducts similarity matching
between query samples and support samples at the gran-
ularity of packets to achieve higher accuracy.

• We evaluate the performance of ConViTML on multiple
datasets, and the experimental results show that the
framework takes the least training time and achieves the
best performance compared to the baselines. Besides, it
is very lightweight with a model size of only 2.45MB.

The rest of this paper is organized as follows. In Section II,
we review the related works on network traffic classification.
In Section III, we formulate the problem. Then we detail the
preprocessing steps for the raw traffic data in Section IV.
In Section V, we introduce the ConViTML framework, and
in Section VI we demonstrate the simulation and evaluation
results. In Section VII, we conclude this paper.

II. RELATED WORKS

There is already quite a lot of literature in this area.
According to different working principles, network traffic
classification methods can be divided into four methods: port-
based, DPI, ML-based, and DL-based [10].

In the early stages, port-based methods [25] and DPI [9] are
commonly used. Port-based methods use the correspondence
between port numbers and application-layer protocols to clas-
sify traffic. For example, HTTP protocol uses port 80 and SSL
uses port 443. However, this method is limited by dynamic
ports [26]. DPI determines network traffic classes by analyzing
whether the payload of packets matches the signature library.
This method requires pre-establishing an application layer
feature identification rule base for network traffic and verifying
whether it matches the feature identification rules in the base
by analyzing the key control information in the payload.
However, the complete network payload analysis not only
has a high computational cost but also may involve user
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privacy disputes and data security leakage issues [27]. To
overcome these limitations, researchers began to seek other
traffic classification methods with lower overhead and better
performance.

So far, some literature employed machine learning to design
models that effectively classify network traffic for security.
For example, [28] used a combination of Support Vector
Machine(SVM), Decision Tree (DT), and Naive Bayes classi-
fiers to reduce the false alarm rate. [29] used Particle Swarm
Optimization(PSO) to further divide the recognition space to
improve the classification accuracy and optimization speed.
[30] proposed an Intrusion Detection System(IDS) based on
binary PSO and Random Forest (RF), where PSO is used
to find the best appropriate features and RF is used as a
classifier. [31] proposed an IDS based on K-Nearest Neigh-
bors (KNN), which employs a percentage-based simplified
neighborhood technique instead of group clustering. However,
network traffic classification based on machine learning often
requires a manual selection of traffic features, which requires
expert experience. At the same time, the rationality of feature
extraction seriously affects the accuracy of classification.

Representation learning, also known as feature learning, is
a technique of DL that automatically extracts features from
different classes of network traffic. In 2015, Wang et al.
initially proposed the similarity between images and TCP flow
payloads and imagined that a payload record is a picture
or a document, and each byte is a pixel or a word [32].
Based on this work, numerous studies have emerged that
involve converting network traffic into grayscale images and
subsequently employing them in conjunction with various
DL models. This also motivates us to adopt the method
of converting network traffic into images. [2] proposed a
lightweight DDoS attack detection model based on CNN,
Lucid. [33], [34] proposed an IDS based on CNN, which
employed PCA and Auto-Encoder(AE) respectively to remove
redundant features to improve the model’s performance and
convergence speed. [35] focused on the problem of classifying
encrypted traffic. It converted encrypted network traffic data
into intuitive images and employed CNN to recognize traffic
categories. Additionally, some literature treats network traffic
as other forms of data as input. [36], [37] treated network
traffic as the time-series data and extracted features using
Stacked Sparse Autoencoders (SSAE) and the enhanced Mul-
timodal DL-based Mobile Traffic Classification (MIMETIC)
framework respectively. [38] mapped network traffic to graph
representations as input for the Graph Neural Network (GNN)
architecture.

While these models can be deployed on edge nodes, iden-
tifying out-of-distribution network traffic samples requires
collecting, cleaning, and labeling samples, and retraining the
models based on these samples. This process is often time-
consuming, labor-intensive, and requires a significant amount
of computational resources. Moreover, out-of-distribution traf-
fic samples are typically limited in number, making accurate
feature representation particularly crucial. In edge environ-
ments, there are often challenges such as limited resources
and sensitivity to latency. Therefore, we designed an end-
to-end traffic classification framework that parallelly extracts

low-dimensional basic features and structural features to ob-
tain discriminative hybrid features. This design effectively
removes redundant information, enhances classification accu-
racy, and reduces training time. Moreover, meta-learning is
adopted to alleviate the contradiction between the massive
overhead caused by model updating when dealing with out-
of-distribution problems and the limited resources of edge
devices.

III. PROBLEM FORMULATION

A. Motivation for introducing meta-learning

We focus on metric-based meta-learning, where the princi-
ple involves learning a metric or distance function to measure
the similarity between different samples for the purpose of
classifying data samples based on their similarities. Generally,
it includes a feature extraction network and a metric func-
tion. Firstly, samples are mapped into a smaller-dimensional
embedding space using the feature extraction network. Then,
a metric function is employed to calculate the similarity
between the support set data and the query set data within
the embedding space, and a certain classification strategy is
applied to categorize the query set data. In this paper, we
utilize the PRN as the metric function to measure the relation
scores between samples in the query set and the support
set. Higher relation scores indicate a higher likelihood that
the query set samples and support set samples belong to
the same category. By learning how to measure similarity
between samples, meta-learning requires only a few support
sets, thereby reducing the reliance on a large amount of labeled
data [39].

It is noted that in network traffic classification, the constant
emergence of new attack types, including zero-day attacks,
poses a significant challenge. In fact, traditional DL-based
methods are unable to detect new attacks. This is because
traditional DL-based methods are trained using a large amount
of labeled data to learn the mapping relationship between input
data and corresponding labels. The model weights are fixed
after training, for instance, each dimension of the output layer
corresponds to the probability of each class in the training
dataset. When the trained model is used to detect novel traffic
samples such as zero-day samples, it will become ineffective
because the training dataset lacks samples of this type.

In contrast, meta-learning operates on a task-level training
unit, where each task consists of a support set DS and a query
set DQ. Unlike traditional DL methods, meta-learning aims to
enable models to quickly learn new tasks based on existing
knowledge, thus avoiding the computational cost associated
with retraining the model for each task switch [40]. The main
idea is to train the model to learn a similarity function that
measures the similarity between support set and query set
samples. When the trained model is required to identify novel
traffic samples such as zero-day attacks, it only needs to add
a few labeled samples to the support set. By comparing the
similarity, the model can determine whether the current traffic
sample is a zero-day attack.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3383218

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on May 21,2024 at 08:25:49 UTC from IEEE Xplore.  Restrictions apply. 



4

TABLE I: Related Works in Network Traffic Classification Tasks

Related Work Port-based DPI ML-based DL-based Out of Distribution
[25] 3 7 7 7 7

[9] 7 3 7 7 7

[28]–[31] 7 7 3 7 7

[32]–[38] 7 7 7 3 7

This paper 7 7 7 3 3

B. Task construction process

We construct the basic unit of meta-learning according
to the following steps. First, we use D to represent the
multidimensional array dataset generated by the preprocessed
raw traffic data, and (xt, yt) to represent a data sample of
D. xt ∈ Rm×d1×d1 is the input of the model, and yt is
the corresponding class label. In order to achieve out-of-
distribution sample classification, it is necessary to learn the
extrapolation rules. We therefore divide the original dataset
into two mutually exclusive subsets, the meta-training set
Dtrain and the meta-testing set Dtest. They are all sets
consisting of sampling tasks. We use the Dtrain set to train
the model, while the tasks in Dtest are used to measure the
final performance of the model.

In addition, the construction process of task T =
{DS ,DQ} is as follows, we select M traffic types
from Dtrain by random, and each type has K labeled
samples. These M × K samples form a support set
DS = {(x1, y1) , (x2, y2) , . . . , (xM×K , yM×K)}. Addition-
ally, select T samples from these M types to form
a query set DQ, which can be denoted by DQ =
{(xM×K+1, yM×K+1) , . . . , (xM×K+T , yM×K+T )}. In gen-
eral, problems of this form are called M -way K-shot clas-
sification problems.

IV. NETWORK TRAFFIC DATA PREPROCESSING

The public datasets of network traffic can be divided into
raw traffic datasets and processed flow features datasets. In
actual use, network traffic data is mostly saved as a file in
pcap or pcapng format. To upgrade the practicality, we design
an end-to-end classification framework that uses the raw traffic
dataset as the input to the model. The size of the pcap file is
variable, but neural network models require input data of a
uniform format and size. Wang et al. proposed that each byte
can be regarded as a pixel or a word, and the flow payload
record can be regarded as the fixed-size image [32]. Numerous
studies utilizing various DL models have demonstrated the
effectiveness of this approach [2], [33], [34]. Therefore, to
better input the network traffic into the DL model for training,
our proposed framework transforms the raw network traffic
data into a grayscale image through a series of preprocessing
operations, which can considerably speed up the later analysis
and mining process.

From the granularity of the target for network traffic classi-
fication, it can be further divided into packet-level, flow-level,
and session-level from small to large. The smaller the gran-
ularity, the more attributes that characterize the classification
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Fig. 1: Network traffic preprocessing

object, and the greater the preprocessing workload required.
Flow level classification focuses on groups of packets with
the same quintuple (source IP, source port, destination IP,
destination port, protocol). In this paper, we use the most
widely used session (bidirectional flow) in current research
as the input object of the neural network.

A session is composed of several data packets and packet
headers. The split file contains too much redundant informa-
tion, which not only affects the final classification accuracy
but also increases the computational complexity of the model.
Data packets with indicators such as SYN, ACK, FIN are a
case in point. During the three-way handshake, these packets
are only used to establish a TCP connection and do not
carry the payload. On the other hand, IP addresses and MAC
addresses are used as logical addresses and physical addresses
of network devices, have no bearing on the classification of
traffic data. Therefore, we should anonymize network traffic.
Besides that, since TCP and UDP headers have different
lengths (20 bytes for TCP vs. 8 bytes for UDP), we pad the
end of the UDP header with zeros to ensure the same length.
In summary, the data preprocessing procedure includes the
following four steps, as shown in Fig. 1:

(1) Traffic split: The pcap file is split into smaller files
based on the criterion of session.

(2) Traffic clear: Remove duplicated packets and packets
that do not carry payloads. Wipe off IP and MAC addresses
from headers.

(3) Uniform data length: Pad the UDP header to 20 bytes,
and only the first m data packets are reserved. The influence
of the value of m on the classification results will be studied
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in Section VI.
(4) Convert the packets to images: Split each session into

data packets and further convert each packet into a grayscale
image.

(5) Convert the packets to images: According to Sec-
tionIII, the original network traffic dataset is constructed as
a task-based training dataset for meta-learning.

Acronyms Explanation
PRN Packet-based Relation Network
RelationNet Relation Network
DPI Deep Packet Inspection
ViT Visual Transformer
APTs Advanced Persistent Threats
ConViTML Convolutional Vision Transformer-

based Meta-Learning
SVM Support Vector Machine
DT Decision Tree
IDS Intrusion Detection System
PSO Particle Swarm Optimization
RF Random Forest
KNN K-Nearest Neighbors
AE Auto-Encoder
SSAE Stacked Sparse Auto-Encoder
RNN Recurrent Neural Network
SAE Sparse Auto-Encoder
MHA Multi-Head Attention
FF Feed Forward
GELU Gaussian Error Linear Unit
MLP Multi-Layer Perceptron
MSE Mean Square Error
ACC Accuracy
DR Detection Rate
FAR False Alarm Rate
TP True Positive
TN True Negative
FP False Positive
FN False Negative
GNN Graph Neural Network
MIMETIC Multimodal DL-based Mobile

Traffic Classification

TABLE II: Explanation of Acronyms

V. CONVITML FOR NETWORK TRAFFIC CLASSIFICATION

When faced with network traffic from previously unseen
classes and limited labeled samples, the scarcity of data can
hinder the generalization ability of traditional DL models. In
the past, CNN has been commonly used for feature extraction
in traffic classification [11], [41]. However, CNN is limited in
processing local areas of a sample, and due to the fixed kernel
size in convolution operations, it may not efficiently capture
long-range dependencies, resulting in reduced accuracy during
learning from limited samples. Additionally, multiple pooling
operations often result in the loss of essential local informa-
tion.

ViT introduces a novel concept of partitioning an image into
multiple equally-sized patches, followed by the application

of the transformer’s self-attention mechanism on each patch
to emphasize task-related features and capture dependencies
between patches [42]. However, ViT’s patchify stem can be
viewed as a non-overlapping stride convolution implemen-
tation, which restricts its ability to effectively extract local
spatial information. Additionally, the complex attention mech-
anism and model design of ViT make it less efficient compared
to CNN.

Traffic consists of a sequence of data packets, where the
interaction between the sender and the receiver is represented
by adjacent data packets. We aim to capture the temporal
relationship between data packets and harness the strengths of
both the local modeling capability provided by CNN and the
global modeling capability offered by ViT [43]. Through the
combination of these two components, we can extract deeper
and more discriminative features, enhancing the effectiveness
of our traffic classification approach.

The proposed framework ConViTML, which consists of
three key components as follows.

A. Package-Level Patchify Stem
The preprocessed input of ConViTML, denoted as xt ∈

Rm×1×d1×d1 , is fed into the network. Each packet pi is treated
as a patch, and we extract shallow low-dimensional features
using a convolutional layer consisting of the sequential module
with two operations. Firstly, we use a 2D convolutional layer
with a single input channel and a single output channel. The
convolutional kernel size is set to 3, with a stride of 1 and no
padding (padding is set to 0). Following this, we perform a 2D
max pooling operation with a pooling window size of 2, sliding
over the input with a stride of 2. This simple convolutional
layer is utilized to extract packet-level basic features and
reduce dimensionality, thereby effectively reducing the number
of parameters involved. The packet-level basic feature vector
wt ∈ Rm×1×d2×d2 of each session extracted from the CNN
can be expressed as

wt = f (xt, θ) , (1)

where θ denotes the training parameters of the CNN and
xt represents an input sample. Since the transformer takes
sequence data as input, we flatten each data packet after
dimensionality reduction to sequence format of size d22. Subse-
quently, we utilize ViT to model the sequence information of
packets within the session. To facilitate this process, learnable
position embeddings are incorporated to capture the positional
relationships among the packets. Furthermore, to streamline
the subsequent processing in the PRN, we remove the class
token. This process can be expressed as

zt = W × wt + PE, (2)

where W is the linear flattening operation and PE ∈ Rm×d2
2 is

the positional embedding, zt ∈ Rm×d2
2 is the final session

embedding after the package-level pathify stem.

B. Transformer Encoder Block
Currently, session embedding zt encompasses the basic fea-

tures of packets. To further extract the structural information
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Fig. 2: The overall architecture of ConViTML.

of the session, we adopt the classic transformer encoder block
of the ViT network, which comprises a Multi-Head Attention
(MHA) block and a Feed Forward (FF) block. In our imple-
mentation, we apply the normalization layer solely before the
MHA block while not utilizing the masking mechanism. The
MHA module’s architecture is depicted in the accompanying
Fig.2(a). Assuming a total of k heads, we obtain k sets of
query (Q), key (K), and value (V ) matrices through this
operation. This process can be mathematically represented as

Q = ztWQ,K = ztWK , V = ztWV . (3)

Here, WQ, WK , and WV represent shared learnable pro-
jection matrices used across all data packets. The correlation
between the query (Q) and the key (K) is computed through a
dot product operation, followed by the application of a softmax
activation function. This generates the attention matrix, which
is then used as the weight for the corresponding value (V ) in
the attention mechanism. This process can be expressed as

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V, (4)

where d is the dimensionality of the key K and query Q,
represents a scaling factor used to avoid excessively large
values resulting from the dot product operation. This scaling
helps prevent the gradients from becoming too small after
passing through the softmax function. Then, we concatenate
the outputs of each attention head and pass them through a
linear layer to obtain the final output of the MHA block. This

process can be expressed as

head j = Attention
(
ztW

Q
j , ztW

K
j , ztW

V
j

)
, j ∈ (0, k]

MHA(Q,K, V ) = Concat (head1, . . . , headn)W
O,

(5)
where WQ

j , WK
j and WV

j represent the mapping matrices of
the j-th attention head, and WO denotes the parameter matrix
of the final linear layer.

The FF block is composed of two linear layers, incor-
porating a non-linear transformation through an activation
function. Firstly, the input features are passed through the
first linear layer to map them into a higher-dimensional
space. Subsequently, the mapped features undergo a non-linear
transformation using an activation function, often the Gaussian
Error Linear Unit (GELU). Finally, the transformed features
are mapped back to the original dimensions using the second
linear layer. The specific structure of the FF block is depicted
in Fig.2(c).

The FF block is designed to flexibly and adaptively perform
non-linear transformations on the features at each packet,
leveraging the Multi-Layer Perceptron (MLP) structure. This
allows for the capture of richer feature representations and
enhances the expressiveness of the model.

To preserve and propagate important information, residual
connections are employed within the FF block. These con-
nections enable the direct addition of the original input to the
output of the module, facilitating efficient information transfer
and propagation throughout the network.
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C. Packet-based Relation Network

The Relation Network (RelationNet) [39] is employed to
address the few-shot classification problem. Its core is to
calculate the distance between two samples by constructing a
neural network and analyzing their matching degree [39]. In
this work, we propose the PRN, with the aim of achieving
more precise classification with finer granularity. For each
packet in a query session, PRN calculates its similarity
score with the aligned packet of the support session. It then
proceeds to average the similarities of all packets in the
query session, leading to the derivation of the sample-to-class
similarity. Specifically, We represent the final representation
for each session as st ∈ Rm×d2

2 , where m is the number of
packets in the session, and d2 is the embedding dimensionality.
Additionally, we denote the final representation for the support
set samples as {(s1, y1) , (s2, y2) , . . . , (sM×K , yM×K)},
and for the query set samples as matrix
{(sM×K+1, yM×K+1) , . . . , (sM×K+T , yM×K+T )}.

Next, we add the feature vectors obtained from the
K samples of the same class in the support set to ob-
tain the feature vector of the corresponding class. The set
of feature vectors for all classes is denoted as D′

S =
{(s′1, y′1) , . . . , (s′w, y′w) , . . . , (s′M , y′M )}. Afterwards, we re-
shape all samples into m × 1 × d2 × d2 in order to facilitate
the input of the PRN. Then, we concatenate the two latent
vectors as C(s′w, sq) ∈ Rm×2×d2×d2 , with w ∈ [1,M ], q ∈
[M ×K + 1,M ×K + T ].

The combined feature map of s′w and sq is input into
the relation module gϕ on a per-packet basis to calculate
the distance between a single query input and each support
sample. This process can be expressed as:

rw,q = Average

(
m∑
i=1

gϕ
(
C
(
pw,′
i , pqi

)))
, (6)

where rw,q is the relation score between the sample feature
vector sq and the class feature vector s′w. This score is com-
puted as the average of all packet-level relation scores. pw,′

i

represents the ith packet embedding in sq , and pqi denotes the
ith packet embedding in s′w. C (·) ∈ R2×d2×d2 represents the
embedding after concatenating the corresponding packets. A
higher relationship score indicates a greater similarity between
s′w and sq .

When s′w and sq belong to the same class, that is y′w = yq ,
the value of relation score rw,q is closer to 1; however, when
s′w and sq belong to different class, that is y′w ̸= yq , the value
of relation score rw,q is closer to 0. In fact, what is judged by
the relation score is the possibility that s′w and sq belong to
the same class. Therefore, the predicted label of the sample
can be obtained by

ŷq = argmax (rw,q) , q ∈ [M ×K + 1,M ×K + T ]. (7)

D. ConViTML for Network Traffic Classification

We use the Mean Square Error (MSE) to supervise the
similarity score, and the loss function can be expressed as

L =

M∑
w=1

M×K+T∑
q=M×K+1

(rw,q − 1 (yw == yq))
2
. (8)

The classification problem generally uses cross-entropy, but
since the final score is a 0 to 1 relationship score, it can also
be regarded as a regression problem, so the MSE is used as
the loss function.

The input of ConViT network is multiple tasks. Algorithm
1 gives the loss calculation process when inputting a task.
First, the CNN extracts low-dimensional shallow basic features
wt, which are then input into ViT to obtain the final session
embedding st. This process preserves the structural features
of session while retaining the package-level basic features.
Furthermore, we concatenate the embeddings of each sample
in the query set and the embeddings of each class at the
packet level as inputs for the PRN, in order to obtain the
final predicted label and loss.

Algorithm 1 The training process of one task on ConViTML

Require: A task for training T = {DS ,DQ}. Batch size T ′.
Ensure: The loss L for back propagation.

1: L ← 0
2: for i = 1 to T ′ do
3: for xs in DS do
4: Transfer xs into embedding vector ss via ConViT.
5: end for;
6: Add the feature vectors of the same class in the support

set to get the final feature vector of each class D′
S =

{(s′1, y′1) , . . . , (s′w, y′w) , . . . , (s′M , y′M )}.
7: for xq in DQ do
8: Transfer xq into embedding vector sq via ConViT.
9: for s′w in D′

S do
10: Cascade s′w and sq into a new vector and

calculate the similarity between s′w and sq by Eq.6.
11: Predict the class label by Eq.7.
12: end for;
13: end for;
14: L ← L+MSE (rw,q, yq == yw).
15: end for

The overall ConViTML network architecture is shown in
Fig. 2. The network consists of a ConViT feature extraction
model and a PRN. To begin with, a one-layer CNN serves
as the basic feature extraction layer. Specifically, this convo-
lutional block includes a 3 × 3 convolutional kernel with a
single filter and a max pooling layer with the size of 2 × 2.
Incorporating ideas from ViT, we utilize the package-level
patchify stem to introduce location information for each packet
in a session while removing the class token for subsequent
input. The ViT component has a depth of 2, consisting of both
the MHA and FF modules. The PRN comprises two convolu-
tional blocks and two linear layers. Each convolutional block
comprises a 2D convolutional layer with a kernel size of 3,
followed by a regularization layer, a ReLU activation function,
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and a maximum pooling layer. The network concludes with a
sigmoid function, which generates the final relation score as
the output.

E. Time Complexity Analysis

Due to the package-level patchify stem only involving
a Conv2D layer, the time complexity for this segment
is O

(
m× d22 × k21

)
, where k1 denotes the kernel size.

The depth of the ViT is 2, resulting in a time com-
plexity of O

(
2×m× 4d22 × 2(d22)

2
)
. The PRN comprises

three Conv2D layers, leading to a time complexity of
O
(
m× d23 × k22 × Cin × Cout

)
, where d3 indicates the final

output dimension of the PRN. Cin represents the number of
input channels, and Cout represents the number of output
channels.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the dataset used, exper-
imental configuration and evaluation metrics used, and then
use the raw network traffic data to evaluate GAEML.

A. Dataset

In evaluating the efficacy of the proposed end-to-end net-
work traffic classification framework, certain aspects warrant
attention. Firstly, concerning dataset selection, it is crucial to
utilize raw network traffic datasets as opposed to processed or
extracted files. Secondly, for precise evaluation result values,
it is essential that each raw traffic sample be associated with
an appropriate label. However, the KDD’99, UNIBS, WIDE,
CIDS2017 and other datasets commonly used in this area are
mostly processed traffic feature datasets and the raw network
traffic data contained in them do not have corresponding labels.
If we label the raw traffic data according to the attack time
period specified in the dataset specification, noise may be
introduced, resulting in poor training results. Therefore, the
USTC-TFC2016 dataset [21] and the CIC IoT 2022 dataset
[44] are used for evaluation in this paper. The USTC-TFC2016
dataset consists of two parts, one is 10 kinds of malicious
traffic collected from the real environment by researchers from
CTU University, and the other is 10 kinds of normal traffic
collected by IXIA BPS equipment. We counted the number of
sessions in the dataset, and the results and their corresponding
network traffic names are shown in Table III.

CIC IoT 2022 is a state-of-the-art dataset collected by the
Canadian Institute for Cybersecurity. It includes data for pro-
filing, behavioral analysis, and vulnerability testing of various
IoT devices with different protocols, such as IEEE 802.11,
Zigbee-based, and Z-Wave. The dataset is collected on 60 IoT
devices deployed at the edge of the network. The main target
of the CIC IoT 2022 dataset project consists of conducting
and capturing the network terrific of devices undercurrent and
important attacks in the IoT environment, which consists of
two different attacks, Flood and RTSP-Brute Force. We extract
2000 sessions in these two different attacks and 4000 sessions
of normal traffic to reconstruct a new dataset and train a model
on it to evaluate the performance of the proposed framework
on binary classification problems.

We first need to preprocess the pcap files. First, according
to the content of Section IV, we perform operations such as
traffic split, traffic clear, uniform data length, and convert the
packets to images. Since we obtained the average number of
bytes per packet according to our statistics is 673 bytes, in
order to obtain the packet header and part of the payload, we
intercept the first 784 bytes of each packet, that is, N = 784. If
the length of the data packet is less than 784, it is padded with
0. We list the grayscale images of packets that appear more
frequently in each type of traffic, as shown in Fig. 3. Here
only one grayscale image is listed in Factime because there is
only one packet in each flow. It can be found that although
the grayscale images of different types are quite different,
there are still some grayscale images that are very similar.
Therefore, extracting the sequence relationship between the
packets can effectively improve the distinguishability of the
extracted features.

B. Metric

Since the basic unit of meta-learning is a task, the metric
we choose is to evaluate the completion of tasks. To assess
the performance of the proposed framework, we apply four
evaluation metrics, Accuracy (ACC), Detection Rate (DR),
False Alarm Rate (FAR), and F1 Score. We first get the
number of True Positive (TP) instances, True Negative (TN)
instances, False Positive (FP) instances, and False Negative
(FN) instances on the reserved test set. Based on these values,
we calculate the exact values of the four metrics according to
the following formulas, which are used to evaluate the overall
performance of the proposed framework. For each experiment,
we generate multiple tasks and calculate the values of these
four metrics. Our objective is to enhance the ACC metric, DR
metric, and F1 Score metric while maintaining a low FAR
metric.

ACC =
TP + TN

TP + FP + TN + FN
(9)

FAR =
FP

TN + FP
(10)

DR =
TP

TP + FN
(11)

F1 Score =
2× TP

2× TP + FN + FP
(12)

C. Experimental Settings

The hardware and software platforms used in the experiment
are as follows: 11th Gen Intel(R) Core(TM) i7-11700 @
2.50GHz, PyTorch1.10.0, Ubuntu 20.04 LTS, CUDA 11.4,
NVIDIA Geforce RTX 3090 Founders Edition. We follow the
split introduced by [39], where the sample categories used
for training and testing are orthogonal. For the USTC-2016
dataset, we select 15 traffic categories for training, reserving
the remaining 5 categories solely for monitoring generaliza-
tion performance. Similarly, for the CIC IOT 2022 dataset,
we specify 2 categories for testing and use the rest of the
categories for training. During network training, we configure
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(1) 10 types of normal network traffic

(2) 10 types of malicious network traffic
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Facetime MySQL WeiboFacetime MySQL Weibo

Outlook Gmail Skype

Facetime MySQL Weibo

Geodo

FTP

Nsis-ay

NerisNeris

Cridex

BitTorrent

SMB

WOW

Fig. 3: Grayscale representation of packets

TABLE III: USTC-TFC2016

Name Type Samples Class Name Type CTU num Samples
BitTorrent N 7502 P2P Cridex M 108-1 8197
Facetime N 6000 Voice/Video Geodo M 119-2 6690

FTP N 6319 Data Transfer Htbot M 110-1 5952
Gmail N 5111 Email Miuref M 127-1 4952

MySQL N 7026 Database Neris M 42,43 8425
Outlook N 7475 Email Nsis-ay M 53 6033
Skype N 6089 Chat/IM Shifu M 142-1 9576
SMB N 5473 Data Transfer Tinba M 150-1 8504
Weibo N 4569 Social Network Virut M 54 6138
WOW N 7592 Game Zeus M 116-2 5664

the learning rate to be 0.0001 and utilize the Adam optimizer.
Additionally, we choose MSE as the loss function and employ
the episode-based training strategy. In this approach, each task
is treated as a training instance, and the model is updated
task by task [45]. Each task is formed by randomly selecting
M categories from the training set and further selecting K
samples from each category, forming an M -way K-shot task.
During testing, we generate 300 M -way K-shot tasks from
the test set to assess the optimal accuracy and other relevant
metrics achieved by the trained model.

Based on the aforementioned settings, we conduct multi-
class classification model evaluation on USTC-2016 and bi-
nary classification model evaluation on CIC IOT 2022, Exper-
iments include

(1) Determining the best representation of network traffic,
the number of packets per session usually varies widely, e.g.
Outlook only contains two packets per session while Virut
contains hundreds of packets. So we have to perform multiple
experiments to determine the optimal number of packets. We

set the number of data packets from 2 to 30 to evaluate its
impact on various evaluation metrics.

(2) Since the input unit of the model in meta-learning is a
task, we need to evaluate the impact of different task forms
on the system performance. Following the standard settings
adopted by most existing meta-learning works, we perform
5-way 5-shot, 5-way 1-shot, 2-way 1-shot, and 2-way 2-shot
classification tasks. The query set for the 5-way 5-shot task
and the 2-way 1-shot task contains 19 of query samples. The
query sets for the 5-way 1-shot task and the 2-way 2-shot task
contain 15 query samples. This means, for example, that for a
2-way 1-shot task, each task contains a total of 19×2+1×2 =
40 samples.

(3) We conduct the ablation study on both datasets, USTC-
2016, and CIC IOT 2022. We exclude the ViT network and
use a single-layer CNN to extract basic features from the data
packets. The primary objective is to demonstrate the impact of
the session’s structural features on enhancing the performance
of ConViTML.
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(4) We replace various networks as feature extractors, in-
cluding ViT, LSTM, and CNN-LSTM. In addition, we choose
the classical RelationNet as the benchmark. To demonstrate
the lightweight nature of ConViTML, we further compare its
model size with four benchmark models.

(5) Compared to existing traffic classification methods,
many excellent works have integrated modular components
into current network models. However, they are unable to
recognize out-of-distribution traffic samples. Therefore, for the
specific scenario of edge environments, we employ training
time and testing time as additional evaluation metrics to
reflect the low latency cost of the framework. We compare
our approach with four existing network traffic classification
models: LeNet [21], GoogLeNet [46], HAST-II [23], and DFR
[47], along with two classical machine learning methods,
K-Nearest Neighbor (KNN) and RandomForest, serving as
baselines on the datasets.

D. Experimental Results and Analysis

To begin with, the determination of the optimal input format
for the ConViTML framework is of paramount importance.
We conduct experiments by observing the changes in various
indices as the number of data packets increased from 1 to
13, at intervals of 2. Table IV presents the optimal results of
various indicators achieved on the USTC-2016 dataset, while
Fig.4(a) and Fig.4(b) showcase the corresponding changes
in accuracy and loss for this dataset. Additionally, Table
V and Fig.4(c) and Fig.4(d) display the results obtained
on the CIC IOT2022 dataset. Fig.4(a) and Fig.4(c) clearly
demonstrate that the framework’s performance is significantly
compromised when the number of data packets is set to 1 for
both datasets. This decline in performance can be attributed
to the insufficient discriminative information contained within
a single data packet. Additionally, the grayscale images con-
verted from the first data packet of various traffic often exhibit
strong similarities, further hindering effective discrimination.
Additionally, as depicted in Fig.4(b) and Fig.4(d) a notable
trend emerges with an increase in the number of data packets:
the loss decreases at a faster speed. This can be attributed
to the additional discriminative information that is introduced
with the inclusion of more data packets. Specifically, for the
USTC-2016 dataset, the framework’s optimal performance is
achieved when the number of data packets is set to 5. Beyond
this point, its performance starts to deteriorate. Similarly, for
the CIC IOT 2022 dataset, the best performance is observed
when the data packet number is 7, followed by a decline. This
is because, if the set number of data packets is much larger
than the actual number available, we pad the missing packets
with 0. Unfortunately, this approach blurs the discriminative
characteristics between different types of traffic, adversely
affecting the overall performance.

Considering factors such as resource constraints and delay
sensitivity in the edge environment, we choose 12 and 14 as
the optimal number of packets for the two datasets USTC-
TFC2016 and CIC IOT2022, respectively. On this basis, we
further conduct experiment (2). We perform 2-way 1-shot, 2-
way 2-shot, and 5-way 1-shot 5-way 5-shot classification tasks

on the USTC-TFC2016 dataset. Meanwhile, we perform 2-
way 1-shot, 2-way 2-shot classification tasks on the CIC IOT
2022 dataset. We randomly shuffle the list of network traffic
types each time and divide the list into two parts: training set
and test set. The network traffic types of the test set will not
participate in model training to verify the effectiveness of the
model for out-of-distribution problems. For the 5-way task, we
use Macro-F1, which involves calculating precision and recall
for each category and then averaging to obtain the Macro-
F1 score. Test tasks are performed every 5 epochs on the
test set. The experimental results, illustrated in Fig.5, clearly
demonstrate that regardless of whether it is a 2-way or 5-way
task, increased support samples lead to higher performance
and faster convergence. However, it is noteworthy that for the
USTC-TFC2016 dataset, the 5-way task results in a decline in
the framework’s performance. We speculate that this decline
may be attributed to the reduction in the number of samples
in the 5-way task due to an insufficient number of total
categories.

Next, to validate the effectiveness of the structural fea-
tures, we conduct experiments where we remove the ViT
component and solely utilize CNN to extract the packet-level
basic features while keeping other components unchanged.
The results are depicted in Fig. 6. Notably, by removing ViT,
we observe an improvement in convergence speed. However,
on the USTC-2016 dataset, the accuracy rate reduces by
approximately 10 percentage points, and on the CIC IOT
2022 dataset, the accuracy rate declines by about 5 percentage
points. Moreover, other indicators also exhibit a decrease. This
outcome clearly indicates that the session structural feature
plays a significant role in enhancing performance.

E. Comparison and discussion

We select RelationNet as the baseline for comparison.
Additionally, we replace different feature extractors to verify
the superiority of ConViT. The details are as follows:

(1) RelationNet: It employs a four-layer CNN as its feature
extractor, performing direct feature extraction on a per-session
basis.

(2) GCN: We utilize a two-layer Graph Convolutional
Network (GCN) to capture the context information of each
packet.

(3) ViT [42]: We use a classic ViT network with a depth of
4 to directly input the data packet as a patch, without using
CNN for dimensionality reduction.

(4) CNN-LSTM: This model first utilizes a two-layer CNN
to extract packet-level features, followed by a two-layer LSTM
to capture information between packets.

For RelationNet, we directly reshape a session into a multi-
channel image, use CNN to extract session-level features,
and then combine the sessions to obtain a similarity score.
As for GCN, we treat each data packet as a node and
connect adjacent packets using undirected edges. Regarding
ViT, we only modify its depth without making any structural
alterations. The final results are displayed in Table VI.

The experimental findings demonstrate that ConViTML
achieves the best performance on both datasets, followed
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TABLE IV: The impact of the number of packets on performance on USTC-2016

Number of packets 1 3 5 7 9 11 13
ACC(%) 55.50 94.91 99.75 97.66 96.16 98.33 98.32
FAR(%) 46.50 5.83 0.16 2.69 4.73 1.31 1.16
DR(%) 57.50 95.66 99.66 97.33 96.33 98.66 98.62

F1 Score(%) 56.37 94.95 99.74 97.65 96.17 98.83 98.91

TABLE V: The impact of the number of packets on performance on CIC IOT 2022

Number of packets 1 3 5 7 9 11 13
ACC(%) 58.25 93.00 93.64 93.54 91.00 95.50 91.50
FAR(%) 39.00 9.00 2.19 1.00 7.57 4.82 12.60
DR(%) 55.50 95.00 96.71 97.04 89.82 89.52 68.05

F1 Score(%) 57.06 93.13 97.76 98.02 83.65 89.37 68.14

(a) Accuracy on USTC-2016 (b) Loss on USTC-2016 (c) Accuracy on CIC IOT 2022 (d) Loss on CIC IOT 2022

Fig. 4: Accuracy and Loss vs Epochs for different numbers of packets on USTC-2016 and CIC IOT 2022 datasets.

(a) Metrics on USTC-2016 (b) Accuracy on USTC-2016 (c) Metrics on CIC IOT 2022 (d) Accuracy on CIC IOT 2022

Fig. 5: Metrics for different kinds of tasks on USTC-2016 and CIC IOT 2022 datasets.

by CNN-LSTM. Both feature extraction models effectively
capture both basic and structural features. The performance
of GCN is relatively inferior, which may be attributed to the
fact that while it extracts contextual information, the basic
features of individual packets lack sufficient discriminative
power. Moreover, it’s worth noting that for USTC-2016, the
performance of all models on the CIC IOT 2022 dataset
declined, mainly due to the limited categories in CIC IOT
2022.

Moreover, to address the practical deployment requirements
in edge environments, we compared the model sizes of the
aforementioned networks. The experimental results are pre-
sented in TableVII. Notably, our model size is merely 2.45MB,
ranking second only to RelationNet, which highlights its
exceptional memory efficiency. In stark contrast, CNN-LSTM
occupies a size of approximately 4806MB, making it about
1957 times larger than our model.

Training time and inference time are also two critical
metrics as users in edge environments require low latency.

To compare different network traffic classification models, we
select several existing models and classic machine learning
approaches. Since ConViTML takes tasks as input, and each
task only contains 15 or 19 query samples, we use the
average single-sample inference time as an indicator. The
results are presented in Table VI, which shows the training
time and inference time of various methods on the USTC-
2016 dataset. Notably, the ConViTML framework exhibits
the lowest training time, taking only 143 seconds, while its
inference time ranks second, following only Random Forest
and LeNet.

VII. CONCLUSION

In this paper, we propose an end-to-end network traffic
classification framework called ConViML, which is suitable
for the edge environment and uses DL to automatically extract
features from raw traffic files without cumbersome manual
operations. For emerging traffic classes, the framework can
avoid a lot of resource consumption caused by model updates.
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(a) Ablation Experiment on USTC-2016 (b) Ablation Experiment on CIC IOT 2022 (c) Optimal Metrics

Fig. 6: Ablation Experiment on USTC-2016 and CIC IOT 2022 datasets

TABLE VI: Comparison of detection results of the proposed framework with baseline networks

Methods Metrics USTC-2016 CIC IOT 2022

RelationNet
ACC(%) 83.75 82.75
DR(%) 85.50 84.50
FAR(%) 17.50 19.00

F1 Score(%) 83.95 83.04

GCN
ACC(%) 66.01 58.00
DR(%) 66.50 52.00
FAR(%) 34.52 36.00

F1 Score(%) 66.16 55.31

ViT
ACC(%) 73.75 67.00
DR(%) 71.00 68.50
FAR(%) 23.50 34.50

F1 Score(%) 73.00 67.48

CNN-LSTM
ACC(%) 94.03 89.66
DR(%) 97.31 89.16
FAR(%) 6.32 9.83

F1 Score(%) 94.37 89.61

ConViTML
ACC(%) 99.75 93.54
DR(%) 99.66 97.04
FAR(%) 0.16 1.00

F1 Score(%) 99.74 98.02

TABLE VII: Comparison of model size of the proposed
framework with baseline networks

Methods Model Size
RelationNet 1.97MB

GCN 18.36MB
ViT 30.12MB

CNN-LSTM 4806.7MB
ConViTML 2.45MB

Specifically, we first split the raw traffic files by session, and
then convert each packet into a fixed-format grayscale image
as input to our model. Then, we utilize a GAE to extract low-
dimensional flow structural features to improve the discrim-
inativeness of features. In addition, the framework leverages
meta-learning to enable out-of-distribution traffic sample clas-
sification. Finally, we conduct extensive experiments on two
real network traffic datasets, and the experimental results show
that the ConViML framework can achieve model training and

TABLE VIII: Comparison of training time and inference time
of the proposed framework with related research works

Methods Training
time

Inference time

LeNet 201s 8.9× 1e−4s
GoogleNet 613s 1.1× 1e−3s
HAST-II 542s 1.2× 1e−3s

DFR 397s 1.03× 1e−3s
KNN - 3.34× 1e−2s

RandomForest 145s 1.62× 1e−5s
ConViTML 143s 9.6× 1e−4s

sample classification faster than existing models. Additionally,
the training dataset of network traffic collected on edge devices
may contain sensitive information that users may not want
to upload. In future work, we are interested in introducing
federated learning to explore the scalability of ConViML
in a distributed architecture. This enables edge devices to
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collaboratively train a global model without the need to upload
training data collected on the devices.
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