
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023 3651

RuleDRL: Reliability-Aware SFC Provisioning With
Bounded Approximations in Dynamic Environments

Yue Zeng , Zhihao Qu , Member, IEEE, Song Guo , Fellow, IEEE, Bin Tang , Member, IEEE,
Baoliu Ye , Member, IEEE, Jing Li , Member, IEEE, and Jie Zhang , Member, IEEE

Abstract— As a key enabling technology for 5G, network func-
tion virtualization abstracts services into software-based service
function chains (SFCs), facilitating mission-critical services with
high-reliability requirements. However, it is challenging to cost-
effectively provide reliable SFCs in dynamic environments due to
delayed rewards caused by future SFC requests, limited infras-
tructure resources, and heterogeneity in hardware and software
reliability. Although deep reinforcement learning (DRL) can ef-
fectively capture delayed rewards in dynamic environments, its
trial-and-error exploration in a vast solution space with massive
infeasible solutions may lead to frequent constraint violations and
traps in poor local optima. To address these challenges, we propose
a RuleDRL algorithm that combines the capability of DRL to
capture delayed rewards and the strength of rule-based schemes to
explore high-quality solutions without violating constraints. Specif-
ically, we first formulate the reliable SFC provision problem as an
integer nonlinear programming problem, which is proven to be
NP-hard. Then, we jointly design DRL and rule-based schemes
that are coupled to make the final decision and establish a bounded
approximation ratio in general cases. Extensive trace-driven simu-
lations show that RuleDRL can save the total cost by up to 65.67%
and improve the SFC acceptance ratio by up to 82%, compared to
the state-of-the-art solution.

Index Terms—Network function virtualization, edge computing,
5G, deep reinforcement learning.

I. INTRODUCTION

5G IS envisioned as an ideal infrastructure to support
numerous promising applications or services, and it

Manuscript received 24 December 2022; revised 16 April 2023; accepted
22 May 2023. Date of publication 31 May 2023; date of current version 8
October 2023. This work was supported in part by the National Natural Science
Foundation of China under Grants 61832005, 62172204, and 62102131, in part
by the Natural Science Foundation of Jiangsu Province, China under Grants
BE2020001-3 and BK20210361, in part by the Future Network Scientific
Research Fund, China under Grant FNSRFP-2021-ZD-07, and in part by the
Collaborative Innovation Center of Novel Software Technology and Industrial-
ization. Recommended for acceptance by E. Damiani. (Corresponding authors:
Zhihao Qu; Song Guo; Baoliu Ye.)

Yue Zeng and Baoliu Ye are with the State Key Laboratory for Novel
Software Technology, Department of Computer Science and Technology, Nan-
jing University, Nanjing 210023, China (e-mail: zengyue@smail.nju.edu.cn;
yebl@nju.edu.cn).

Zhihao Qu and Bin Tang are with the Key Laboratory of Water Big Data
Technology of Ministry of Water Resources, Hohai University, Nanjing 211100,
China (e-mail: cstb@hhu.edu.cn; zhihaoqu@hhu.edu.cn).

Song Guo, Jing Li, and Jie Zhang are with the Department of Com-
puting, The HongKong Polytechnic University, Hung Hom, Hong Kong (e-
mail: song.guo@polyu.edu.hk; jing5.li@polyu.edu.hk; 18104473r@connect.
polyu.hk).

Digital Object Identifier 10.1109/TSC.2023.3281759

includes two key enabling technologies, Network Functions Vir-
tualization (NFV) and Software Defined Networking (SDN) [1].
Among them, NFV abstracts hardware-based network functions
into software, which enables network functions to be flexibly
implemented on commodity servers. Then, the service can be
abstracted into a sequence of virtual network functions (VNFs),
called a service function chain (SFC) [2]. This greatly simplifies
service deployment and helps service providers save on CAPEX,
and OPEX [3], [4], [5]. Moreover, SDN physically separates the
network control plane from the forwarding plane, providing a
global view of the entire network for the network operators to
facilitate resource management [6].

In 5G networks, service failures are common due to software
or hardware factors [7]. Naturally, emerging mission-critical
applications urge network providers to support highly reliable
services, such as medical monitoring and industrial automation,
requiring 99.9999% reliability [8]. Frequent service failures can
lead to lost turnover, lost potential customers, tarnished brands,
and harm to corporate reputation. An effective way to support
these highly reliable services is to provide backup instances for
its component VNFs. Once a VNF fails, the traffic is redirected to
its backup instance, thereby maintaining the service and masking
the failure [9].

Although more backups could provide higher reliability,
this may incur higher resource costs. Thus, several existing
works [9], [10], [11], [12], [13] investigate how to back up
and deploy SFCs to meet their reliability expectations with
minimal resource cost. Then, efficient rule-based algorithms are
designed based on their insights, which can explore high-quality
solutions that satisfy constraints, such as computational capac-
ity and reliability constraints. However, their solutions rely on
assumptions such as sufficient memory, enough bandwidth, and
reliable hardware, which limit their practicality for bandwidth-
and memory-intensive VNFs.1 Moreover, these schemes usually
make one-shot decisions over individual SFC requests and fail

1Memory-intensive VNFs are common, such as IDS (Intrusion-Detection
System) and NAT (Network Address Translation), which are memory-intensive
to cache static rules and NAT tables [14], [15]. Bandwidth-intensive VNFs in-
volve virtual routers that intensively consume bandwidth to forward traffic [16].
Besides, for VNFs, there is a correlation between their memory and computing
capacity [17]. Memory-intensive VNFs typically require significant computing
capacity to process data efficiently. Then, we need to carefully allocate different
types of resources for cost efficiency.

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5553-5534
https://orcid.org/0000-0001-7538-1985
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0002-4577-8882
https://orcid.org/0000-0003-1065-449X
https://orcid.org/0000-0002-7027-5574
https://orcid.org/0000-0002-8073-2118
mailto:zengyue@smail.nju.edu.cn
mailto:yebl@nju.edu.cn
mailto:cstb@hhu.edu.cn
mailto:zhihaoqu@hhu.edu.cn
mailto:song.guo@polyu.edu.hk
mailto:jing5.li@polyu.edu.hk
mailto:18104473r@connect.polyu.hk
mailto:18104473r@connect.polyu.hk

3652 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

to capture delayed rewards brought by future SFC requests in
dynamic environments,2 resulting in sub-optimal solutions.

DRL is precisely designed to capture delayed rewards in com-
plex dynamic environments, where neural networks are used to
extract the hidden rules in complex environments by interacting
with them. As a result, several pioneering works [19], [20], [21],
[22] apply DRL to SFC provision and show excellent perfor-
mance and great potential. To further satisfy service reliability,
Jia et al. [23] first propose a rule-based scheme to determine the
number of backups to satisfy service reliability and then use DRL
to schedule VNFs intelligently. However, they invoke some strict
assumptions, such as that hardware reliability is homogeneous,
software failures are negligible, and such that the backup and de-
ployment problems are addressed separately. These assumptions
are usually not held in edge environments, where the reliability
of edge sites (ESs) is heterogeneous, and software reliability is
non-negligible for services with high-reliability requirements.
Moreover, the above-mentioned DRL-based schemes lack the-
oretical guarantees of performance.

In this paper, we study how to achieve reliable SFC provision-
ing cost-effectively in dynamic environments by considering
all the above-mentioned intrinsic and critical factors, includ-
ing heterogeneous hardware and software reliability, limited
memory, bandwidth, and computing resources. We model these
features and formulate the reliable SFC provision (RSFCP)
problem as a nonlinear integer programming problem, which
is proved to be NP-hard. To tackle this problem, we first exploit
a typical DRL algorithm, called Deep Deterministic Policy
Gradient (DDPG) [24], to capture delayed rewards in dynamic
environments, which can effectively handle our problem with
continuous state space and large-scale action space. However,
the solution space in RSFCP problem is huge, and trial-and-error
exploration in DRL can lead to long training times and poor local
optima (as shown in Fig. 1(a), DRL converges to a solution
worse than a simple rule-based scheme). Moreover, RSFCP
problem suffers from multifold constraints resulting in massive
infeasible solutions in the solution space, and trial-and-error
exploration leads to frequent constraint violations, which in
turn lead to low SFC acceptance ratios (as shown in Fig. 1(b)).
To address the above challenges, we incorporate a rule-based
scheme into DDPG, where DDPG is responsible for capturing
delayed rewards and outputting a fractional solution to guide the
rule-based decision. The rule-based scheme is designed based on
our insights (the least reliable VNF limits SFC reliability), which
prioritizes adding backup instances for the least reliable VNFs
and deploys these instances on ESs with sufficient resource
capacity under the guidance of the fractional solution to satisfy
SFC reliability without violating capacity constraints. Finally,
rigorous theoretical proof and trace-driven simulation results
verify our algorithm’s optimality, superiority, and robustness.

The main contributions of this paper are summarized as
follows.

2Delayed reward. In dynamic environments, the current decision determines
the immediate reward and the next state of the environment [18]. The delayed
reward is a metric to measure the benefits of the next state, which indicates the
impact of the current decision on the future, helping to achieve higher long-term
returns.

Fig. 1. Motivation. (a) DRL starts with a poor solution, requires long training
times, and gets stuck in poor local optima. (b) DRL suffers from frequent
constraint violations, resulting in low SFC acceptance ratios.

� To the best of our knowledge, we are the first to study
how to achieve reliable SFC provisioning cost-effectively
in dynamic environments, considering intrinsic and critical
factors, including heterogeneous hardware and software re-
liability and limited infrastructure resources. Specifically,
we formulate the reliable SFC provisioning problem as an
integer nonlinear programming and prove its NP-hardness.

� We design RuleDRL to combine the advantages of both
DRL and rule-based schemes, where DDPG is used to cap-
ture delayed rewards, and rule-based schemes are used to
incorporate our insights to explore a cost-efficient feasible
solution. This algorithm is rigorously proven to output so-
lutions with bounded approximation guarantees in general
cases. In particular, it conditionally achieves a constant
approximation ratio in most realistic scenarios.

� Extensive simulation results driven by Alibaba trace show
that, compared with the state-of-the-art solution, RuleDRL
can save the total cost by up to 65.67% and improve the
SFC acceptance ratio by up to 82%.

The rest of the paper is organized as follows. Section II
briefly introduces the related work. Section III formulates the
problem we studied and proves its NP-hardness. RuleDRL is
proposed and analyzed in Section IV and evaluated in Section V.
Section VI concludes the paper.

II. RELATED WORK

This section summarizes and discusses related works in SFC
provision from two categories, i.e., Rule-based solutions and
DRL-based solutions.

A. Rule-Based Solution for SFC Provision

There is a series of works [9], [10], [11], [12], [13], [25],
[26] have investigated how to support SFC provisioning cost-
effectively, and efficient rule-based solutions are designed based

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3653

TABLE I
SUMMARY OF RELATED RESEARCH

on expert insights. As pioneers, Potharaju et al. [7] revealed
that failures of network functions are attributable to software
or hardware failures and experimentally verified that backups
can effectively mask failures and maintain services. Then, the
authors in [9], [10] studied how many backups are required for
each VNF to ensure SFC reliability while minimizing backup
resource costs and propose rule-based algorithms to provide
backups for VNFs with the greatest reliability improvement
greedily. Further, considering the limited physical resources,
several studies [11], [12], [13], [25], [26] investigated how many
instances need to be allocated for each VNF and to which ESs
these instances should be deployed to meet service reliability
efficiently with resources, and proposed efficient rule-based
solutions. The above research has greatly promoted reliable
service provision, and a series of efficient rule-based algorithms
have been proposed. However, they ignore the limitations of
bandwidth and memory resources and the resource cost of
memory and bandwidth. Moreover, these rule-based solutions
make one-shot decisions, which fail to capture delayed rewards
brought by future SFC requests in dynamic environments.

B. DRL-Based Solution for SFC Provision

To cope with complex dynamic environments, several recent
works [19], [20], [21], [22], [23], [27] have investigated how
to apply DRL for service provisioning. As pioneers, in order
to ensure capacity constraints, the authors in [19], [20] added
penalties in the reward function to punish capacity violations.
Besides, to meet the flow conservation constraints, Pei et al. [21]
proposed an efficient rule-based scheme to generate a set of fea-
sible routing paths to ensure the flow conservation constraints,
and then DRL is used for routing and deployment decisions.
Similarly, Fan et al. [22] proposed a rule-based scheme to
generate a set of solutions satisfying capacity constraints and
then used DRL to select the best one. However, the reliability
requirements of SFCs are out of their concern. Considering
reliability, Khezri et al. [27] studied how to utilize DRL to deploy
VNFs in SFC to meet its reliability requirements. However, SFC
backups are beyond their concern, which fails to provide high
reliability for the service. A work closely related to our research
is [23], which investigated how to back up and deploy SFCs to
satisfy their reliability requirements. However, several assump-
tions sacrifice their practicality, such as hardware reliability
being homogeneous, software reliability being negligible, band-
width and memory resources being sufficient, and memory and

Fig. 2. System Framework.

bandwidth costs being negligible. These assumptions can lead
to frequent constraint violations and suboptimal solutions for
services with high-reliability requirements and heterogeneous
ESs. Moreover, the above-mentioned DRL-based schemes lack
theoretical guarantees.

Although existing works have studied how to achieve reliable
SFC, they ignore bandwidth and memory capacity, heteroge-
neous software and hardware reliability, or delayed reward in
dynamic environments. We summarize the differences between
this paper and existing work in Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the system model, formulates the
reliable SFC provision problem, and analyzes its complexity.

A. Primer

1) System Model: As shown in Fig. 2, our system consists of
three components [28], which can be modeled as follows.

SFC: SFC is the abstraction of the service and consists
of multiple VNFs, which can be implemented on commodity
servers via virtual machines or containers. In the system, SFC
requests arrive one by one. Let Si denote the i-th SFC request,
and I denote the set of SFC requests. Each SFC request Si has
a reliability requirement �i, and it consists of a set of VNFs
Vi, where the j-th VNF is denoted as vi,j . Each VNF vi,j has
software reliability ri,j , demand computing resources ci,j , and
memory resources mi,j . After a service’s traffic is processed by
a VNF, it may vary in size [29], and the outgoing traffic from
the VNF vi,j is denoted as bi,j .

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

3654 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

NFVI: NFV Infrastructure (NFVI) includes diverse physical
resources, such as compute, memory, and bandwidth resources,
that are virtualized as virtual resources to support flexible VNF
execution. In NFVI, there is a set of ESs E , each ES e ∈ E with
hardware reliability re has Ce units of computing resources and
Me units of memory resources. In addition, we use κe and ζe to
denote the costs per unit of computing resources and memory
resources, respectively [30], [31]. LetL denote the set of overlay
links connecting the ESs. Each link (e, e′) ∈ L has a capacity
Be,e′ and incurring a cost τe,e′ per unit bandwidth resource [32].

MANO: NFV Management and Orchestration (MANO) is
owned by service providers and is responsible for orchestrating
and managing virtualized computing, memory, and bandwidth
resources in NFVI. Once an SFC request arrives, MANO deter-
mines how to implement it on NFVI, continuously monitors the
implemented service, and recovers the failure accordingly. The
MANO is implemented by fault-tolerant SDN controllers [33],
[34], [35] and can be considered reliable.

2) Backup Strategies: To support highly reliable services,
there are two typical backup strategies, i.e., on-site backup and
off-site backup [26], [36]. The on-site backup refers to providing
backup instances in the same ES as the primary VNF instance to
mask the VNF instance failures, and it can be restored quickly.
However, in this case, the VNF reliability is limited by ES
reliability. Once an ES fails, all VNF instances on the ES fail.
The off-site backup refers to providing backup instances on
geographically separated ESs for the primary VNF instance,
which can provide higher reliability and is suitable for appli-
cations with high-reliability requirements. Therefore, similar
to [10], this backup strategy is adopted in our research to support
mission-critical applications with high-reliability requirements.

3) Reliable SFC Provision: In our dynamic environment, the
SFC request arrives one by one, and we need to implement
them on NFVI, and after the SFC is deployed, the traffic is
forwarded along this SFC. Besides, to meet the SFC reliability
requirements, each VNF may also need to be added with backup
instances. Therefore, reliable service provisioning involves three
decisions: 1) how many instances (backup and primary) are
needed for each VNF; 2) which ESs should these instances
be deployed to; 3) which VNF instances should be selected
as the primary instances for forwarding traffic. An example
is illustrated in Fig. 2, in which a service is abstracted as an
SFC, Network Address Translator (NAT) → Fireware (FW)
→ Intrusion Detection System (IDS). Their VNF instances are
deployed to ESs A, B, C, D, where the instances deployed
to ESs A, B, and C are selected as primary instances for
forwarding traffic, and the instance deployed to ES D is used
as a backup to improve reliability to meet service reliability
requirements. The notations to be used are listed in Table II.

B. Problem Formulation

In our research, we investigate how to achieve SFC provi-
sioning in dynamic environments to meet service reliability
requirements while minimizing resource costs under limited
resource capacity. Next, we analyze and formulate the cost,
reliability, and capacity models.

TABLE II
SUMMARY OF NOTATIONS

1) Cost Model: Implementing SFC to NFVI will incur fi-
nancial costs, including computational, bandwidth, and memory
costs [20], [37]. Specifically, deploying a VNF on an ES will
incur computational and memory resource costs [30], [31], while
forwarding traffic between primary VNF instances will incur
bandwidth resource costs [32].3 Then, the resource cost of SFC
Si can be defined as

Ci =
∑
j∈Vi

∑
e∈E

ci,jκex
i,j
e +

∑
j∈Vi

∑
e∈E

mi,jζex
i,j
e

+
∑
j∈Vi

∑
e,e′∈L

bi,jτe,e′z
i,j
e,e′ , ∀i ∈ I, (1)

where xi,j
e is a binary variable indicating whether the instance

of VNF vi,j is deployed to ES e, and zi,je,e′ is a binary variable
indicating whether the traffic from VNFvi,j traverses link (e, e′).

2) Reliability: Similar to [39], we define reliability as the
probability that an item performs the required function without
failure.

For each SFC, once a VNF fails, the entire SFC fails [40].
Similar to [9], [10], [23], [41], we consider that the virtual link
connecting VNFs is reliable, which is reasonable.4 Then, the
reliability constraint can be formulated as

Ri =
∏
j∈Vi

Ri,j ≥ �i, ∀i ∈ I, (2)

3It should be noted that we only consider the bandwidth cost of forwarding
between the primary VNFs. This is because the reliability of VNF software and
ES hardware is generally higher than 0.99 [7], [38], which means that the traffic
being forwarded to the backup instance is negligible.

4According to [42], more than 90% of the underlying links fail no more than
once every 5709 hours. The virtual link can be restored quickly (within 100ms)
by re-planning an underlying path [43]. That is, the reliability of the virtual link
is about 2 ∗ 10−8, which is negligible for 5G mission-critical applications with
reliability requirements not exceeding 10−6[8].

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3655

where Ri and Ri,j indicate the reliability of SFC Si and VNF
vi,j respectively.

For each VNF, its instances may be deployed on different ESs.
A VNF fails only when its instance fails on all ESs [11]. Then,
the VNF reliability can be derived as

Ri,j = 1−
∏
e∈E

(1−Ri,j
e), ∀i ∈ I, j ∈ Vi, (3)

where Ri,j
e indicates the reliability of VNF vi,j on ES e.

Once a VNF instance is deployed to an ES, it fails when its
VNF instance has a software failure, or the ES has a hardware
failure [25]. Thus, the reliability of VNF vi,j on ES e can be
denoted as

Ri,j
e = ri,jrex

i,j
e , ∀i ∈ I, j ∈ Vi, e ∈ E , (4)

where xi,j
e is a binary variable indicating whether VNF vi,j is

deployed on ES e.
3) Capacity: In NFVI, physical resources are limited, in-

cluding bandwidth, memory, and computing resources. The
resource capacity constraints can be formulated as∑

i∈I

∑
j∈Vi

ci,jxi,j
e ≤ Ce, ∀e ∈ E , (5)

∑
i∈I

∑
j∈Vi

mi,jxi,j
e ≤ Me, ∀e ∈ E , (6)

∑
i∈I

∑
j∈Vi

bi,jzi,je,e′ ≤ Be,e′ , ∀(e, e′) ∈ L. (7)

4) SFC Completeness: For each SFC, each of its VNFs needs
to be deployed with at least one instance as the primary instance
for forwarding traffic to ensure service completeness, which can
be written as ∑

e∈E
xi,j
e ≥ 1, ∀i ∈ I, j ∈ Vi. (8)

5) Primary Instance: Each VNF in each SFC has a primary
instance for forwarding its traffic (9), and other instances serve
as backup instances. The instance on ES e can be served as the
primary instance of VNF vi,j only if the instance of the VNF
is deployed on the ES (10). The traffic from VNF vi,j traverses
link (e, e′) only if its primary instance is deployed to ES e and
the primary instance of its successor VNF vi,j+1 is deployed to
ES e′ (11). The above conditions can be formalized as∑

e∈E
yi,je = 1, ∀i ∈ I, j ∈ Vi, (9)

xi,j
e ≥ yi,je , ∀i ∈ I, j ∈ Vi, e ∈ E , (10)

zi,je,e′ = yi,je yi,j+1
e′ , ∀i ∈ I, j ∈ Vi, (e, e′) ∈ L, (11)

where yi,je is a binary variable indicating whether the instance of
VNF vi,j deployed on ES e is selected as the primary instance.

Thus, the offline version of the reliable SFC provision (RS-
FCP) problem in dynamic environments can be formulated as

min
xi,j
e ,yi,j

e ,zi,j

e,e′

∑
i∈I

Ci

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11),

xi,j
e ∈ {0, 1}, yi,je ∈ {0, 1}, zi,je,e′ ∈ {0, 1}.

C. Problem Complexity

1) Hardness Result: We first prove that it is NP-hard to
determine whether RSFCP problem has a feasible solution and
then prove that it is still NP-hard when all SFC requests are
accepted.

Theorem 1: It is strongly NP-hard to determine whether there
is a feasible solution for RSFCP problem.

Proof: This theorem can be proven by showing that a spe-
cial case of RSFCP problem is equivalent to the minimized
version of the general assignment problem (MinGAP) [44].
We assume |I| = 1, Me = Be = ∞, �i = ζe = τe,e′ = 0, ∀i ∈
I, e ∈ E , (e, e′) ∈ L. In this case, our problem is equivalent to
the MinGAP problem; determining whether it has a feasible
solution has been proved to be strongly NP-hard. Therefore, our
problem is also strongly NP-hard. �

Theorem 2: Assuming all SFCs are accepted, RSFCP prob-
lem is NP-hard.

Proof: This theorem can be proved by showing that a
special case of RSFCP problem is equivalent to a classical
NP-hard problem, i.e. the 0-1 knapsack problem [45]. We
assume |Vi| = 1, Me = Be = ∞, �i = ζe = τe,e′ = 0, ∀i ∈
I, e ∈ E , (e, e′) ∈ L. Besides, there are two ESs A and B,
in which κA = 0 and CB = ∞. In this case, our problem is
equivalent to the 0-1 knapsack problem [45]. For brevity, the
formal proof is omitted. �

Unless P = NP, the above theorems rule out polynomial time
algorithms for this problem, even when all SFC requests are
accepted. Although there are approximation algorithms [46] for
the 0-1 knapsack problem, RSFCP problem cannot be effectively
solved by these algorithms due to the following pain points.

2) Pain Points: The existing solutions to the above combi-
natorial optimization problems in dynamic environments can be
divided into two categories: rule-based solutions and data-driven
DRL. The pain points of these solutions to handle RSFCP
problem are revealed as follows.

Rule-Based Heuristic: Rule-based heuristics are widely used,
which leverage expert insights to explore high-quality solutions
subject to constraints. However, rule-based schemes are difficult
to handle our problem efficiently for the following reasons.
i) Rule-based heuristics make one-shot decisions and fail to
capture delayed rewards in dynamic environments brought by
future arriving SFCs. Besides, future SFC requests are difficult
to predict precisely. ii) In RSFCP problem, backup, deployment,
and primary VNF selection decisions are coupled to determine
resource cost and reliability due to heterogeneous factors, in-
cluding hardware and software reliability, resource cost, and
capacity. For such a complex problem, effective insights are dif-
ficult to obtain to guide the exploration of high-quality solutions,
even for experts.

DRL: DRL is designed to handle complex dynamic envi-
ronments, which can effectively capture delayed rewards, and
extract hidden rules from complex environments using neural

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

3656 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 3. Algorithm framework.

networks [47]. However, there are several challenges in applying
DRL to RSFCP problem. i) DRL interacts with the environ-
ment in a trial-and-error manner to learn the rules hidden in
the environment; this may lead to frequent constraint viola-
tions, including capacity, reliability, and SFC completeness con-
straints. This means service performance degradation and SLA
(service-level agreement) violations, which are unacceptable for
mission-critical services. ii) In our problem, the solution space
is huge,5 and random initialization usually leads to a poor initial
solution, which in turn leads to long training times, trapping in
poor local optima, or even failure to converge, as shown in Fig. 1.

To address these challenges, we next design RuleDRL, which
leverages both strengths.

IV. ALGORITHM DESIGN

This section designs RuleDRL algorithm, which combines
the strengths of rule-based heuristics and DRL, where DRL is
used to capture delayed rewards and extract hidden rules from
complex environments, while the rule-based heuristic is used
to make high-quality decisions without violating constraints.
Specifically, we first introduce the algorithm framework, then
introduce the details of the algorithm, and finally demonstrate
its theoretical properties.

A. Algorithm Framework

To capture delayed rewards in dynamic environments, the
reinforcement learning (RL) framework is adopted, as shown
in Fig. 3. The framework consists of two entities, i.e., the agent
and the environment, where the agent discovers the state from
the environment, takes action based on the state, and acts on
the environment. Then, the environment gives corresponding
rewards according to the quality of the action. Finally, the agent
updates the policy based on the feedback reward, aiming to
maximize the expected cumulative reward.

In DRL, the agent explores the environment in a trial-and-
error manner, and the neural network’s output acts directly
on the environment as an action, which can lead to frequent
constraint violations, especially for our problem with many con-
straints. Inspired by the relaxation and rounding schemes [48],

5For example, the solution space contains 21000 = 10301 solutions when
|I| = 10, |Vi| = 5, |E| = 10.

it solves the relaxed integer linear programming to produce a
fractional solution and rounds this fractional solution based on
expert insight to obtain a high-quality solution that satisfies the
constraints.6 We utilize a typical DRL algorithm for capturing
delayed rewards, called DDPG, which can deal with our problem
with continuous states and large-scale discrete actions (details in
the next subsection). After capturing the delayed reward, DDPG
outputs a fractional solution to guide the rule-based scheme
to make decisions. Then, we make a backup, deployment, and
primary VNF selection decision based on our insights and the
fractional solution to obtain a high-quality solution that satisfies
all constraints. Finally, this decision is applied to the environ-
ment as an action.

B. RL Model

The essential elements required by RL can be described by a
tuple 〈S,A,R〉, referring to the state space, action space, and
reward, respectively. We define these three elements as follows.

State: As shown in Fig. 3, the state in the environment
includes information about that newly arrived SFC request
and NFVI, i.e., S = 〈�i, r

i,j , bi,j , ci,j ,mi,j , κe, ζe, re, τe,e′ ,
Be,e′ , Ce,Me, ∀j ∈ Vi, e ∈ E , (e, e′) ∈ L〉. In this case, the size
of the state is 4|Vi|+ 5|L|+ 2|E|+ 1. Obviously, the change
in SFC length leads to a change in state size, which leads to a
mismatch with the fixed neural network input layer. To address
this challenge, we express the state of the SFC in a redundant
manner. According to [49], the length of SFC does not exceed
7, and we can use a fixed length to describe the state of SFC;
if the length of SFC is less than 7, we fill it with zero. Then,
S=〈�i, r

i,j , bi,j , ci,j ,mi,j , κe, ζe, re, τe,e′ , Be,e′ , Ce, Me, ∀j∈
{1, . . ., L}, e ∈ E , (e, e′) ∈ L〉, where L denotes the maximum
SFC length. Then, the state size is 4L+ 5|L|+ 2|E|+ 1.

Action: The action is output by the agent, which is responsible
for making backup, deployment, and primary VNF instance
selection decisions. In a dynamic environment, SFC requests
arrive one by one. Once an SFC request Si arrives, we need to
determine whether to deploy instances on each ES for each VNF
in the SFC, and which VNF instances are selected as the primary
instance to forward traffic. Then, the action can be formu-
lated as,A = 〈xi,j

e , yi,je , ∀j ∈ Vi, e ∈ E , (e, e′) ∈ L〉. Similar to
state representation, we respond to changing action sizes in a
redundant manner. Then, A = 〈xi,j

e , yi,je , ∀j ∈ {1, . . ., L}, e ∈
E〉. The state size is 2L|E|.

Reward: The reward is feedback from the environment that
indicates the action’s quality. We designed the reward function
based on RSFCP problem. On the one hand, RSFCP problem
aims to minimize the total resource cost, and the higher the total
resource cost, the smaller the reward should be. On the other
hand, once a decision violates the constraint in RSFCP problem,
it may reject the SFC request because of the unacceptable
performance degradation for mission-critical applications. This
will cause economic losses, and it should be punished. Based

6It should be noted that relaxation and rounding schemes fail to capture
the delayed reward brought by the future SFC. The challenge is that the
nonlinear integer programming has too many constraints, which is extremely
time-consuming to solve.

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3657

on the above analysis, the reward function can be formalized as
R = −Ci − Poi, where oi indicates whether the SFC request
Si is satisfied, P is the penalty value.

C. RuleDRL Algorithm

1) DDPG Algorithm: As modeled above, the state is con-
tinuous, and the action is large-scale discrete. Therefore, we
apply DDPG, which can deal with both continuous states and
large-scale discrete states. After specifying the state, action, and
reward, the DDPG is determined. However, as shown in Fig. 1,
the result directly output by DDPG may fall into poor local
optima and frequently violate constraints due to random explo-
ration in the huge solution space. Therefore, in our algorithm, the
output of DDPG is not directly used as an action. Instead, DRL is
responsible for outputting a fractional solution that guides sub-
sequent the rule-based heuristic to make decisions. The output of
DDPG can be defined as A′ = 〈xi,j

e , yi,je , ∀j ∈ {1, . . ., L}, e ∈
E〉, where xi,j

e and yi,je are fractions, as a preference indicator,
the larger the value, the more preferred.

Next, we briefly explain how DDPG captures the delayed
reward as follows. In DDPG, there are two types of networks
called actor networks and critic networks. The actor network
with parameter θA is used to output an action based on the
current state, and the critic network with parameter θA is used
to evaluate the value of the state. The state value indicates the
expectation of future rewards for that state and is used to capture
the delayed reward. Then, the reward obtained after taking action
can be expressed as Ψi = Ri + γQ(Si+1, θ

A, θC), where Ri

denotes its immediate reward, γ denotes its discount factor,
and Q(Si+1, θ

A, θC) denotes its state reward, which implies the
expectation of its future reward. Q(Si+1, θ

A, θC) is dependent
on the state Si+1, the actor network, and the critic network.7 In
this way, both immediate and delayed rewards can be captured.
The details of DDPG are omitted for brevity; refer to [24] for
details.

2) Rule-Based Algorithm: The rule-based algorithm is re-
sponsible for finding a high-quality (low resource cost) solution
that satisfies all constraints, including capacity constraints, SFC
completeness constraints, and reliability constraints. This algo-
rithm is designed to make SFC backup, deployment, and primary
VNF instance selection decisions based on our insights and the
fractional solution output by DDPG.

In RSBD problem, the key issue is satisfying the SFC relia-
bility. To this end, we give the following result.

Lemma 1: The reliability of each SFC is limited by its compo-
nent VNF with the lowest reliability, that is, Ri ≤ minj∈Vi

Ri,j .
Proof: According to (2), we have

Ri =
∏
j∈Vi

Ri,j ≤ min
j∈Vi

Ri,j , (12)

where the second inequality is due to 1 > Ri,j > 0. �

7It should be noted that information about NFVI in stateSt+1 can be obtained
by taking action in a simulated environment, such as updating the corresponding
resource capacity. The information about the next SFC request in St+1 can be
obtained from the request buffer in MANO [50]. If there is no SFC request in
the buffer, we randomly select an SFC request from the historical requests and
treat it as the next arriving request to get Q(Si+1, θ

A, θC).

Algorithm 1: RuleDRL Algorithm.
Input:
�i, r

i,j , bi,j , ci,j ,mi,j , κe, ζe, re, τe,e′ , Be,e′ , Ce,Me.
Output: oi, xi,j

e , yi,je .
1: xi,j

e , yi,je ↼ call DDPG;
2: Initialize xi,j

e ↼ 0, yi,je ↼ 0, ∀j ∈ {1, . . ., L}, e ∈ E ;
3: oi ↼ 1; Ri ↼ 0;
4: Ri,j ↼ 0, ∀j ∈ Vi;
5: Ψj ↼ {e, ∀e ∈ E}, ∀j ∈ Vi;
6: while Ri < �i do
7: Ψj ↼ Ψj − {e, ∀e ∈ Ψj |ci,j > Ce ∨mi,j >

Me}, ∀j ∈ Vi;
8: j′ ↼ argminj∈Vi,Ψj !=∅ Ri,j ;
9: if j ′ = None then

10: break;
11: end if
12: e ↼ argmaxe∈Ψj′ xi,j′

e ;
13: xi,j′

e ↼ 1;
14: Ψj′ ↼ Ψj′ − e;
15: Update reliability Ri, Ri,j , and update available

resources Me, Ce;
16: end while
17: if Ri ≥ �i then
18: for j ∈ Vi do
19: F ↼ {e′, ∀e′ ∈ E|xi,j−1

e = 1 ∧ xi,j
e′ = 1 ∧Be,e′ ≥

bi,j , ∀(e, e′) ∈ L};
20: yi,je ↼ 1, e = argmaxe∈F yi,je ;
21: Update available resources Be,e′ ;
22: end for
23: end if
24: if Ri < �i or

∑
j∈Vi yi,je < |Vi| then

25: oi ↼ 0; xi,j
e ↼ 0; yi,je ↼ 0, ∀j ∈ Vi, e ∈ E ;

26: end if

This lemma inspires us to add backups for the VNF in SFC
with the lowest reliability (and available resources allow it to
add additional backups), which can effectively improve SFC
reliability. Its details are described in the next subsection.

3) Algorithm Description: The RuleDRL algorithm is shown
in Algorithm 1, which is triggered by the arrival of a new SFC.
First, we call DDPG to obtain a fractional solution and initialize
decision variables and reliability. Then, we initialize the set of
ESs that are candidates to add backups for each VNF. Moreover,
we greedily add backups for the VNF with the lowest reliability
on the candidate ES with the largest fractional solution. During
this process, we exclude those candidate ESs that violate capac-
ity constraints. This process terminates until the SFC reliability
is satisfied or there is no candidate ESs for adding backups.
Further, we select the VNF instance as the primary instance for
forwarding traffic, which has sufficient bandwidth resources and
the largest fractional solution. Finally, we reject the SFC request
if the constraint is violated.

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

3658 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

D. Algorithm Analysis

1) Computational Complexity: In RuleDRL algorithm, the
computational complexity in the offline training process is
proportional to the size of the training data and the training
period. After offline training, we can leverage the trained model
to perform online inference, i.e., determine how to back up,
deploy and select the primary VNF instance for newly arrived
SFC requests. Since the offline training process is run offline,
we mainly focus on the computational complexity in the online
running process [19], [21].

Assume that there are N hidden layers in the neural network
in RuleDRL, each layer contains M neurons.

Theorem 3: In RuleDRL algorithm, the online process runs
in O(NL|E|+N |L|+MN2 + L|E|2 + L2|E|).

Proof: As shown in Algorithm 1, we first call DDPG to
obtain the fractional solution, and its complexity depends on
the structure of the neural network. The state is fed into the
input layer, which has size L+ 5|L|+ 2|E|+ 1. The action is
output by the output layer, which has size 2L|E|. Therefore,
this process runs in O(N(L|E|+ |L|+MN)). Then, the al-
gorithm initializes the parameters in O(L|E|). Further, in the
worst case, the algorithm greedily runs in O(L|E|2 + L2|E|) for
adding backups to the VNF with the least reliability. Besides,
the algorithm selects the primary VNF in O(L|E|). Finally, the
algorithm resets the parameters inO(L|E|) when the constraints
cannot be satisfied. Based on the above analysis, RuleDRL runs
in O(NL|E|+N |L|+MN2 + L|E|2 + L2|E|). �

Notably, the complexity of our algorithm is acceptable, which
is further verified by simulation results.

2) Algorithm Approximation: Next, we establish the approx-
imation ratio of our proposed algorithm in general cases.8 To
facilitate the theoretical analysis, we define the following vari-
ables,

ξ = min{re, ∀e ∈ E}, η = min{ri,j , ∀j ∈ Vi},
�max = max{�i, ∀i ∈ I}, κmin = min{κe, ∀e ∈ E},
κmax = max{κe, ∀e ∈ E}, ζmin = min{ζe, ∀e ∈ E},
ζmax = max{ζe, ∀e ∈ E}, τmin = min{τe,e′ , ∀(e, e′) ∈ L},
τmax = max{τe,e′ , ∀(e, e′) ∈ L}. (13)

In the following theorem, we analyze the performance of
RuleDRL in the general case, where all SFC requests are ac-
cepted.9

Theorem 4: Assuming that all SFC requests are accepted,
RuleDRL algorithm is a max{�log1−ξη(1− (�max)

1
L) +

8The approximation ratio of an algorithm refers to the ratio between the result
obtained by the algorithm and the optimal cost or profit [51]. In this article, the
approximate ratio refers to the ratio between our algorithm and the optimal
solution in terms of the total resource cost.

9In the real-world scenario, the service provider is obliged to accept all
SFC requests for turnover. Although the resources of each ES are limited, the
resources of massive distributed ESs have sufficient resources to support SFC
backup, deployment, and routing.

1�κmax

κmin
, �log1−ξη(1− (�max)

1
L) + 1� ζmax

ζmin
, τmax

τmin
}-

approximation algorithm.
Proof: According to (1), (8), (9), (11), the resource cost of

SFC Si in the optimal solution satisfies

C̃i ≥ κmin

∑
j∈Vi

(ci,j
∑
e∈E

x̃i,j
e) + ζmin

∑
j∈Vi

(mi,j
∑
e∈E

x̃i,j
e)

+ τmin

∑
j∈Vi

∑
e,e′∈L

bi,j z̃i,je,e′

≥ κmin

∑
j∈Vi

ci,j + ζmin

∑
j∈Vi

mi,j + τmin

∑
j∈Vi

bi,j . (14)

where x̃i,j
e , z̃i,je,e′ denote the optimal decision.

Since the accepted SFC request satisfies the constraints, based
on (9), (11), the resource cost of SFC Si in RuleDRL satisfies

Ci ≤ κmax

∑
j∈Vi

(ci,j
∑
e∈E

xi,j
e) + ζmax

∑
j∈Vi

(mi,j
∑
e∈E

xi,j
e)

+ τmax

∑
j∈Vi

bi,j . (15)

The reliability of the SFC can be improved by adding backups
to its VNFs. Intuitively, a limited number of instances are needed
to satisfy the specified SFC reliability. That is,

∑
e∈E x

i,j
e is

bounded, it is proved as follows.

We first declare that once minj∈Vi{Ri,j} ≥ �i)
1

|Vi | , then the
SFC reliability is satisfied (Ri ≥ �i). This can be formally
proved as follows.

Based on (2), we have

Ri =
∏
j∈Vi

Ri,j ≥
∏
j∈Vi

min
j′∈Vi

Ri,j′

≥
∏
v∈Vi

(�i)
1

|Vi | = �i, j ∈ Vi. (16)

Define R̂i,j as the reliability of VNF vi,j before its last
instance is added. We also define x̂i,j

e as the backup and de-
ployment decision for VNF vi,j before its last instance is added.
Then, we have∑

e∈E
x̂i,j
e + 1 =

∑
e∈E

xi,j
e , ∀i ∈ I, j ∈ Vi. (17)

In RSBD algorithm, we iteratively add backups to the VNF
with the lowest reliability until the SFC reliability is satisfied.
Obviously, once a VNF needs to be additionally added instances,

its reliability is lower than (�i)
1

|Vi | . Then, we have

R̂i,j < (�i)
1

|Vi | < (�max)
1

|Vi | , ∀i ∈ I, j ∈ Vi. (18)

Based on (3), (4), we have

R̂i,j = 1−
∏
e∈E

(1− ri,jrex̂
i,j
e) ≥ 1−

∏
e∈E

(1− ξηx̂i,j
e)

= 1−
∏
e∈E

(1− ξη)x̂
i,j
e = 1− (1− ξη)

∑
e∈E x̂

i,j
e , (19)

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3659

where the third equation is obtained because the value of x̂i,j
e ∈

{0, 1}.
Further, by taking the logarithm of (19), we have
∑
e∈E

x̂i,j
e ≤ log1−ξη(1− R̂i,j) ≤ log1−ξη

(
1− (�i)

1

|Vi |
)
, (20)

where the second inequality is obtained by (18).
Obviously, based on (17), (20), we have
∑
e∈E

xi,j
e =

∑
e∈E

x̂i,j
e + 1 ≤ log1−ξη

(
1− (�max)

1

|Vi |
)
+ 1.

(21)

Since xi,j
e ∈ {0, 1},

∑
e∈E x

i,j
e is also an integer. Then,

∑
e∈E

xi,j
e ≤

⌊
log1−ξη

(
1− (�max)

1

|Vi |
)⌋

+ 1

≤
⌊
log1−ξη

(
1− (�max)

1
L

)⌋
+ 1. (22)

Then, based on (15), (22), we have

Ci ≤
(
�log1−ξη(1− (�max)

1
L)�+ 1

)
·
⎛
⎝κmax

∑
j∈Vi

ci,j

+ ζmax

∑
j∈Vi

mi,j

⎞
⎠+ τmax

∑
j∈Vi

bi,j . (23)

Finally, the approximate ratio of RuleDRL algorithm is

α=

∑
i∈I Ci∑
i∈I C̃i

≤max

{
�log1−ξη

(
1− (�max)

1
L

)
+ 1�κmax

κmin
,

�log1−ξη(1− (�max)
1
L) + 1�ζmax

ζmin
,
τmax

τmin

}
.

�
Specially, we discuss the approximate performance of Rule-

DRL algorithm in realistic cases.
Corollary 4.1: RuleDRL algorithm is a max{5κmax

κmin
,

5 ζmax

ζmin
, τmax

τmin
}-approximate algorithm in the realistic case, where

�max ≤ 0.999999, η ≥ 0.99, ξ ≥ 0.99, L ≤ 7.10

Proof: In the above realistic case, we have

�log1−ξη (1− (�max)
1
L)� ≤ �log1−0.99·0.99(1− 0.999999

1
7)�

= �4.03� = 4. (24)

Then, based on Theorem 4, the approximate ratio satisfies

α ≤ max

{
5
κmax

κmin
, 5

ζmax

ζmin
,
τmax

τmin

}
. (25)

�

10As shown in [8], the reliability requirement of mission-critical services is
distributed in [0.99-0.999999], where �max ≤ 0.999999. Besides, ES hard-
ware downtime is about 29 hours per year [38], implying reliability of 0.9967,
which is clearly in line with ξ ≥ 0.99. Moreover, the reliability of service soft-
ware is distributed in [0.99041-0.9999], which is also consistent with η ≥ 0.99).
Finally, the typical SFC length is less than 7, that is, L ≤ 7.

In real-world scenarios, the cost differences per unit of com-
puting, memory, and bandwidth resources are bounded by con-
stants [30], [31], [32]. That is to say, κmax

κmin
= ε1, ζmax

ζmin
= ε2,

τmax

τmin
= ε3, where ε1, ε2, ε3 are constants. In this case, α =

max{5ε1, 5ε2, ε3}. That is, in real-world scenarios, our algo-
rithm has a constant approximation ratio.

We further consider a special case where ESs are isomor-
phic in computation cost, memory cost, and links are isomor-
phic in bandwidth cost. That is, κe = κe′ , ∀e ∈ E , e′ ∈ E ; ζe =
ζe, ∀e ∈ E , e′ ∈ E ; τe,e′ = τe′′,e′′′ , ∀(e, e′) ∈ L, (e′′, e′′′) ∈ L. In
this case, κmin = κmin, ζmax = ζmin, τmax = τmin. Based on
Corollary 4.1, we have α ≤ max{5, 5, 1} = 5. This means that
the resource cost of our algorithm does not exceed 5 times the
optimal solution. In the evaluation, we further verify with the
results that our algorithm can well approach the optimal solution.

V. EVALUATION

In this section, we first present the evaluation settings, then
analyze and discuss the simulation results.

A. Settings

Evaluation Environment: We implement a Python-based sim-
ulator and use PyTorch to build the machine learning framework.
All simulations are conducted on a computer with 40-Core In-
tel(R) Xeon(R) CPU @ 2.40 GHz, 125G RAM, and an NVIDIA
Geforce RTX 3090 GPU.

Service Function Chain: The SFC consists of 1-7 VNFs [49].
The computational, memory, and bandwidth resource costs re-
quired by each VNF are derived from the Alibaba cluster-trace-
v2018 trace data [52]. Besides, the software reliability of VNFs
is distributed in [0.999,0.99999] [7]. Moreover, the reliability
requirements of SFCs are distributed in [0.99, 0.999,0.9999,
0.99999, 0.999999] [8].

NFVI: In NFVI, there are 30 ESs, which are interconnected by
overlay links. The bandwidth capacity of each link, as well as the
computing resource and memory resource capacity of each ES
are also derived from the Alibaba cluster-trace-v2018 trace data.
The hardware reliability is distributed in [0.999− 0.99999],
which is obtained from typical infrastructure providers [53]. The
cost per unit of computing and memory resources on each ES
is distributed between 1-10 units, and the cost of bandwidth
resources on each link is distributed between 1-10 units [30],
[31], [32].

Parameters: Each neural network has three layers, and each
hidden layer contains 1024 neurons [54]. The learning rates for
Actor and Critic are 0.001 and 0.003 [55], respectively. The
discount factor is 0.99. The penalty parameter P is set as 1000,
which is based on the resource cost. The above parameters are
adopted as default settings unless otherwise specified. All the
data points are collected from 100 runs.

Algorithms Comparison: We evaluate RuleDRL with the fol-
lowing algorithms.
� Rule-Based: This is a simplified version of our algorithm;

the rule-based scheme is used to add backups to the VNFs
with the lowest reliability and deploy these instances to

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

3660 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 4. Compared with the optimal solution.

the ESs with the greatest reliability improvement, with no
capacity violations.

� DDPG: This algorithm is a simplified version of our algo-
rithm, where DDPG [24] outputs an integer solution.

� RDSSAI: This is an improved version of RDSSA [23],
where DRL is used to make deployment decisions.

� SAB [13]: The algorithm first provides a static backup for
each VNF in the SFC, and dynamically adds backups for
failed VNFs.

� DRL-D [22]: The algorithm utilizes a DRL-based approach
to deploy each VNF in the SFC without violating capacity
constraints in a resource-efficient manner.

� Optimal solution: The optimal solution is obtained by
exploring the solution space via the branch and bound
method.

B. Simulation Result

1) Optimality: We evaluated the optimality of our algorithm
by comparing it with the optimal solution in total cost and
execution time under different numbers of SFCs. Since solving
the optimal solution is time-consuming, we set |E| = 5, |Vi| =
1, |I| ∈ [1, 5], which is a small scale special case. The simulation
results are shown in Fig. 4.

As shown in Fig. 4(a), the total cost of RuleDRL is close to the
optimal solution. For example, when there are 5 SFCs, the total
cost of RuleDRL is 187.72, and the optimal solution is 157.08.
That is, our algorithm is 16.31% away from the optimal solution.
It should be noted that the optimal solution is obtained by ex-
ploring the solution space, which has known information about
all future SFCs. However, in the real environment, information
about the future SFC is difficult to obtain accurately. Therefore,
we believe that RuleDRL is good in optimality. Besides, solving
the optimal solution exhibits exponential growth as the number
of SFC requests increases, as shown in Fig. 4(b). This is because
as the number of SFC requests increases, the solution space

Fig. 5. Compared with other solutions in total cost.

grows exponentially, and exploring optimal solutions in such a
large solution space is extremely time-consuming. When there
are 5 SFCs, it takes 1275.5 s to explore the optimal solution,
while RuleDRL only takes 5.8 ms. It should be noted that we
do not provide the optimal solution in the following simulations
because it is extremely time-consuming.11 The above results
verify that our algorithm has good optimality and is significantly
better than the optimal solution in terms of execution time.

2) Superiority: We evaluate the superiority of our algorithm
by comparing it with existing works in terms of total cost and
SFC acceptance ratio, and the results are shown in Figs. 5 and
6. As shown in Fig. 5(a), our algorithm consistently outper-
forms other algorithms under different numbers of SFCs. For

11It should be noted that the solution space also exhibits exponential growth
as the SFC length and the number of ESs increase. In the following evaluation,
|E| ≥ 30, |Vi| ∈ [1, 7], |I| ≥ 5, which leads to unacceptable time to solve the
optimal solution even when |I| = 5 (no optimal solution was obtained after 10
hours of execution).

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3661

Fig. 6. Compared with other solutions in SFC acceptance ratio.

example, when there are 25 SFCs, the total cost of Rule-Based,
RuleDRL, DDPG, RDSSAI, SAB, and DRL-D are 3806, 2756,
10612, 8005, 8127, and 14689, respectively. This means that our
algorithm can save the total cost by 27.589%, 74.03%, 65.67%,
66.09%, and 81.24%, compared with Rule-Based, DDPG, RDS-
SAI, SAB, and DRL-D. That is, our algorithm can save the
total cost by up to 65.67% compared to existing solutions.
The reason is that compared with Rule-Based, RuleDRL can
capture delayed rewards and has a stronger ability to extract the
rules behind RSFCP problem. Compared with DDPG, RDSSAI,
SAB, and DRL-D, RuleDRL can better cater to constraints and
avoid punishment caused by violating constraints.12 Besides,
DRL-D does not provide any backups, which leads to frequent
violations of reliability requirements and the highest total cost
due to penalties. And SAB provides a static backup for each

12It should be noted that once the requirements of an SFC request are violated,
it will be rejected, resulting in lost revenue and penalty costs.

VNF in each SFC, resulting in resource waste for SFCs with
low-reliability requirements. Moreover, the total cost of these
algorithms increases with the number of SFC requests since
more SFCs lead to more resource consumption. Similar results
can be found in Fig. 5(b), (c), and (d), where our algorithm
always outperforms other solutions in terms of total cost under
different numbers of ESs, SFC length and reliability require-
ments. As shown in Fig. 5(b), with the increase in the number
of ESs, the total cost of DDPG gradually increases, as random
exploration in DDPG leads to more backups to be deployed.
As shown in Fig. 5(c), as the length of SFC increases, the
total cost of our algorithm gradually increases, which is due
to more VNFs that need to be deployed, resulting in more
resource consumption. As shown in Fig. 5(d), as the reliability
requirements of SFC increase, the total cost of our algorithm
gradually increases, which is because more backups need to be
deployed to meet the SFC reliability requirement, resulting in
more resource costs. The above results verify that our algorithm
significantly outperforms existing algorithms in total cost.

As shown in Fig. 6(a), RuleDRL and Rule-Based can always
accept all requests, while DDPG, RDSSAI, SAB, and DRL-D
may reject requests frequently. For example, when there are 25
SFCs, the SFC acceptance ratios of DDPG, RDSSAI, SAB, and
DRL-D are only 93.6%, 70.4%, 46.4%, and 21.6%. This is be-
cause, in RDSSAI and DDPG, the DRL agent randomly explores
the solution space, which contains massive solutions that violate
constraints, including SFC completeness, capacity, and reliabil-
ity constraints. Frequent constraint violations lead to frequent
SFC requests to be rejected. In Rule-Based and RuleDRL, con-
straints are carefully checked before making decisions, and they
exploit rules to effectively prevent constraints from being vio-
lated. Besides, SAB provides a static backup for each VNF and
dynamically increases the backup when the VNF instance fails.
This is sufficient for requests with low-reliability requirements
but not for those with high-reliability requirements. When an
SFC request arrives, and both the primary and backup instances
of one of its VNFs fail, but the dynamically increased backup
has not yet been activated, it fails. Similar results can be found in
Fig. 6(b), (c), and (d), where our algorithm always outperforms
other solutions in terms of SFC acceptance ratio under different
number of ESs, SFC length and reliability requirements. As
shown in Fig. 6(d), RuleDRL and Rule-Based can still accept
all SFC requests under different reliability requirements. This
is because our algorithm dynamically allocates more backups
for SFC requests when its reliability requirements are higher.
When the SFC reliability requirement is 0.999999, RuleDRL can
improve the SFC acceptance ratio by 88%, 82%, 92%, and 100%
compared to DDPG, RDSSAI, SAB, and DRL-D. Besides, the
SFC acceptance ratios of DDPG, RDSSAI, SAB, and DRL-D
gradually decreased as the reliability requirements increased.
This is because software reliability is ignored in RDSSAI, which
leads to more and more SFC requests being rejected due to
reliability violations when SFC reliability requirements become
higher. Besides, in DDPG, higher reliability requirements lead
to more solutions in the solution space violating reliability
constraints, which in turn leads to random exploration exploring
more solutions violating the constraints. Moreover, SAB and

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

3662 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 7. Compared to other solutions in convergence and execution time.

DRL-D fail to adapt to the differentiated reliability requirements
of SFCs, which leads to a decrease in their SFC acceptance
ratio as the reliability requirements become higher. The above
results verify that our algorithm is also superior to the existing
algorithms in SFC acceptance ratio.

3) Practicality: We evaluate the practicality of RuleDRL in
convergence and execution time during training and inference,
respectively, and the results are shown in Fig. 7. As shown
in Fig. 7(a), the figure above is a partial expansion of the
figure below. RuleDRL consistently outperforms the other five
algorithms, as guided by the rule-based scheme, starting with a
high-quality solution and converging to a better solution. This
benefits from the rule-based scheme, which prevents DRL from
exploring low-quality solutions. Besides, the total cost of RDS-
SAI is jittery with increasing training episodes due to frequent
penalties introduced by constraint violations. Moreover, the total
cost of DDPG is significantly higher than the other algorithms,
since its random initialization may produce a decision with a
large number of unnecessary, redundant backups, which is quite
costly. Besides, it gradually converges to a poor local optimum
since it needs to explore an extremely large solution space,
which is inefficient and prone to getting stuck in a poor local
optimum. Moreover, the total cost of DRL-D does not change
significantly, since it does not provide backup for any VNF in
each SFC, resulting in reliability violations and stable penalties.
As shown in Fig. 7(b), the execution time of SAB is significantly
longer than other algorithms, while our algorithm has a similar
execution time with RDSSAI, Rule-Based, DDPG, and DRL-D.
This is because SAB needs to utilize an optimizer to solve
a linear programming, which is time-consuming. When there
are 50 ESs, SAB algorithm requires 3.15 s to obtain a service
provision decision for an SFC request, while our algorithm only
requires 0.029 s, which is acceptable for service provision. The
above results verify that our algorithm has good practicality in
convergence and execution time.

Fig. 8. Accumulated rewards under different parameter settings.

4) Robustness: We evaluate the performance of RuleDRL
under different parameter settings, as shown in Fig. 8. As shown
in Fig. 8(a), RuleDRL tends to converge to a larger reward under
different hidden layer neuron settings. Besides, RuleDRL with
more hidden layer neurons tends to converge faster because
larger neural networks have a stronger fitting ability. As shown
in Fig. 8(b), RuleDRL still converges to a larger reward under the
different number of hidden layer settings. Moreover, RuleDRL
with more neural network layers tends to converge to larger
rewards, also due to the stronger fitting ability of larger neural
networks. Despite the above advantages, larger neural networks
result in longer training and inference times and may underfit
insufficient training sets. The above results show that our algo-
rithm can converge with different parameters over the training
epochs, showing good robustness.

VI. CONCLUSION

Achieving highly reliable SFCs in dynamic edge environ-
ments is challenging due to the delayed rewards brought by
future SFCs, limited infrastructure resources, and heterogeneous
hardware and software reliability. To capture these challenges,
we formulate the reliable SFC provision problem as a nonlin-
ear integer programming problem, prove its NP-hardness, and
reveal its pain points. To address this problem, we propose a
RuleDRL algorithm combining the advantages of both DRL
and rule-based schemes, where DRL is used to capture delayed
rewards in dynamic environments. The rule-based method is
based on our findings on the formulation of SFC reliability
and explores cost-efficient solutions to satisfy all constraints.
This algorithm is rigorously proved to output solutions with
bounded approximation guarantees in general cases. Extensive
trace-driven simulations verify that our algorithm significantly
outperforms the state-of-the-art solution in terms of resource
cost and SFC acceptance ratio.

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

ZENG et al.: RULEDRL: RELIABILITY-AWARE SFC PROVISIONING WITH BOUNDED APPROXIMATIONS 3663

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing–A key technology towards 5G,” ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive and availability-
aware virtual network function scheduling for NFV,” IEEE Trans. Serv.
Comput., vol. 15, no. 1, pp. 188–201, Jan./Feb. 2022.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba, “Network function virtualization: State-of-the-art and research
challenges,” IEEE Commun. Surveys Tut., vol. 18, no. 1, pp. 236–262, First
Quarter 2016.

[4] J. Pei, P. Hong, K. Xue, and D. Li, “Resource aware routing for service
function chains in SDN and NFV-enabled network,” IEEE Trans. Serv.
Comput., vol. 14, no. 4, pp. 985–997, Jul./Aug. 2021.

[5] J. Elias, F. Martignon, S. Paris, and J. Wang, “Efficient orchestration
mechanisms for congestion mitigation in NFV: Models and algorithms,”
IEEE Trans. Serv. Comput., vol. 10, no. 4, pp. 534–546, Jul./Aug. 2017.

[6] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[7] R. Potharaju and N. Jain, “Demystifying the dark side of the middle: A
field study of middlebox failures in datacenters,” in Proc. ACM Internet
Meas. Conf., 2013, pp. 9–22.

[8] 3GPP, “Service requirements for the 5G system (release 18),” Tech.
Specification Group Serv. Syst. Aspects, Tech. Rep. TS 22.261, 2021.
[Online]. Available: https://www.3gpp.org/ftp//Specs/archive/22series/
22.261/22261-i11.zip

[9] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, “RABA:
Resource-aware backup allocation for a chain of virtual network func-
tions,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1918–1926.

[10] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of
service function chains,” in Proc. IEEE Conf. Comput. Commun., 2017,
pp. 1–9.

[11] W. Liang, Y. Ma, W. Xu, Z. Xu, X. Jia, and W. Zhou, “Request reliability
augmentation with service function chain requirements in mobile edge
computing,” IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4541–4554,
Dec. 2022.

[12] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service function
chain backup cost over the edge and cloud by a self-adapting scheme,” in
Proc. IEEE Conf. Comput. Commun., 2020, pp. 2096–2105.

[13] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service function
chain backup cost over the edge and cloud by a self-adapting scheme,”
IEEE Trans. Mobile Comput., vol. 21, no. 8, pp. 2994–3008, Aug. 2022.

[14] M. A. Jamshed et al., “Kargus: A Highly-scalable Software-based Intru-
sion Detection System,” in Proc. ACM Conf. Comput. Commun. Secur.,
2012, pp. 317–328.

[15] G. Papathanail, A. Pentelas, and P. Papadimitriou, “Towards fine-grained
resource allocation in NFV infrastructures,” in Proc. IEEE Glob. Commun.
Conf., 2021, pp. 1–6.

[16] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and B.
Mukherjee, “On service-chaining strategies using virtual network func-
tions in operator networks,” Comput. Netw., vol. 133, pp. 1–16, 2018.

[17] D. Gedia and L. Perigo, “Performance evaluation of SDN-VNF in virtual
machine and container,” in Proc. IEEE Conf. Netw. Function Virtualization
Softw. Defined Netw., 2018, pp. 1–7.

[18] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[19] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement
via deep reinforcement learning in SDN/NFV-enabled networks,” IEEE J.
Sel. Areas Commun., vol. 38, no. 2, pp. 263–278, Feb. 2020.

[20] J. S. P. Roig, D. M. Gutierrez-Estevez, and D. Gündüz, “Management
and orchestration of virtual network functions via deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 304–317,
Feb. 2020.

[21] J. Pei, P. Hong, K. Xue, D. Li, D. S. Wei, and F. Wu, “Two-phase virtual
network function selection and chaining algorithm based on deep learning
in SDN/NFV-enabled networks,” IEEE J. Sel. Areas Commun., vol. 38,
no. 6, pp. 1102–1117, Jun. 2020.

[22] Q. Fan, P. Pan, X. Li, S. Wang, J. Li, and J. Wen, “DRL-D: Revenue-
aware online service function chain deployment via deep reinforce-
ment learning,” IEEE Trans. Netw. Service Manag., vol. 19, no. 4,
pp. 4531–4545, Dec. 2022.

[23] J. Jia, L. Yang, and J. Cao, “Reliability-aware dynamic service chain
scheduling in 5G networks based on reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[24] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1–14.

[25] J. Li, W. Liang, M. Huang, and X. Jia, “Providing reliability-aware
virtualized network function services for mobile edge computing,” in Proc.
IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 732–741.

[26] J. Li, W. Liang, M. Huang, and X. Jia, “Reliability-aware network ser-
vice provisioning in mobile edge-cloud networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 7, pp. 1545–1558, Jul. 2020.

[27] H. R. Khezri, P. A. Moghadam, M. K. Farshbafan, V. Shah-Mansouri,
H. Kebriaei, and D. Niyato, “Deep reinforcement learning for dynamic
reliability aware NFV-based service provisioning,” in Proc. IEEE Glob.
Commun. Conf., 2019, pp. 1–6.

[28] NFV, GS and others, “Network functions virtualisation (NFV); Architec-
tural framework,” Ind. Specification Group Netw. Functions Virtualization,
vol. 2, no. 2, 2013, Art. no. V1.

[29] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent NFV middleboxes,” in Proc. IEEE Conf.
Comput. Commun., 2017, pp. 1–9.

[30] Compute pricing, 2022. [Online]. Available: https://www.oracle.com/
cloud/compute/pricing.html

[31] Memory Pricing, 2022. [Online]. Available: https://cloud.ibm.com/docs/
ComposeForElasticsearch?topic=ComposeForElasticsearch-pricing

[32] Bandwidth Pricing, 2022. [Online]. Available: https://azure.microsoft.
com/en-us/pricing/details/bandwidth/

[33] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3rd Workshop Hot Top. Softw. Defined Netw., 2014, pp. 1–6.

[34] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-Tolerance in Software-Defined Networking,” in Proc. 1st ACM
SIGCOMM Softw. Defined Netw. Res., 2015, pp. 1–12.

[35] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:
Simplifying distributed SDN control planes,” in Proc. USENIX Conf. Netw.
Syst. Des. Implementation, 2017, pp. 329–345.

[36] M. Huang, W. Liang, X. Shen, Y. Ma, and H. Kan, “Reliability-aware
virtualized network function services provisioning in mobile edge com-
puting,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2699–2713,
Nov. 2020.

[37] H. Huang et al., “Scalable orchestration of service function chains in NFV-
enabled networks: A federated reinforcement learning approach,” IEEE J.
Sel. Areas Commun., vol. 39, no. 8, pp. 2558–2571, Aug. 2021.

[38] J. Covitz, “Resilience at edge computing sites is resilience for the whole
IT environment,” 2019. [Online]. Available: https://www.networkworld.
com/article/3356439/resilience-at-edge-computing-sites-is-resilience-
for-the-whole-it-environment.html

[39] Reliability definition, 2022. [Online]. Available: https://reliabilityweb.
com/en/articles/what-is-reliability

[40] M. Karimzadeh-Farshbafan, V. Shah-Mansouri, and D. Niyato, “A dy-
namic reliability-aware service placement for network function virtual-
ization (NFV),” IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 318–333,
Feb. 2020.

[41] J. Li et al., “Budget-aware user satisfaction maximization on service
provisioning in mobile edge computing,” IEEE Trans. Mobile Comput.,
early access, Sep. 9, 2022, doi: 10.1109/TMC.2022.3205427.

[42] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A large scale study
of data center network reliability,” in Proc. Internet Meas. Conf., 2018,
pp. 393–407.

[43] X. Jin et al., “Dynamic scheduling of network updates,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 539–550, 2014.

[44] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[45] Knapsack Problem, 2022. [Online]. Available: https://en.wikipedia.org/
wiki/Knapsack_problem#0-1_knapsack_problem

[46] D. Pisinger and P. Toth, “Knapsack Problems,” in Handbook of Combina-
torial Optimization. Berlin, Germany: Springer, 1998, pp. 299–428.

[47] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierar-
chical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[48] H. Q. Ngo, “Approximation algorithms based on LP relaxation,” 2005.
[Online]. Available: https://cse.buffalo.edu/∼hungngo/classes/2005/594/
notes/relaxation-rounding.pdf

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

https://www.3gpp.org/ftp//Specs/archive/22series/22.261/22261-i11.zip
https://www.3gpp.org/ftp//Specs/archive/22series/22.261/22261-i11.zip
https://www.oracle.com/cloud/compute/pricing.html
https://www.oracle.com/cloud/compute/pricing.html
https://cloud.ibm.com/docs/ComposeForElasticsearch{?}topic=ComposeForElasticsearch-pricing
https://cloud.ibm.com/docs/ComposeForElasticsearch{?}topic=ComposeForElasticsearch-pricing
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://www.networkworld.com/article/3356439/resilience-at-edge-computing-sites-is-resilience-for-the-whole-it-environment.html
https://reliabilityweb.com/en/articles/what-is-reliability
https://reliabilityweb.com/en/articles/what-is-reliability
https://dx.doi.org/10.1109/TMC.2022.3205427
https://en.wikipedia.org/wiki/Knapsack_problem#0-1_knapsack_problem
https://en.wikipedia.org/wiki/Knapsack_problem#0-1_knapsack_problem
https://cse.buffalo.edu/~hungngo/classes/2005/594/notes/relaxation-rounding.pdf
https://cse.buffalo.edu/~hungngo/classes/2005/594/notes/relaxation-rounding.pdf

3664 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

[49] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro, “Service
function chaining use cases in mobile networks,” Internet Eng. Task Force,
Tech. Rep. draft-ietf-sfc-use-case-mobility-09, 2019. [Online]. Available:
https://datatracker.ietf.org/doc/pdf/draft-ietf-sfc-use-case-mobility-09

[50] Y. Kim, J. Park, D.-H. Kwon, and H. Lim, “Buffer management of vir-
tualized network slices for quality-of-service satisfaction,” in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw., 2018, pp. 1–4.

[51] Approximation Algorithms, 2023. [Online]. Available: https://www.cs.
yale.edu/homes/aspnes/pinewiki/ApproximationAlgorithms.html?highli
ght=%8CategoryAlgorithmNotes%29

[52] K. W. J. Guo, Z. Chang, and G. Xu, “Cluster-trace-V2018,” 2022. [Online].
Available: https://github.com/alibaba/clusterdata

[53] C. Cérin et al., “Downtime statistics of current cloud solutions,” Int. Work.
Group Cloud Comput. Resiliency, Tech. Rep. iwgcr2014, 2014. [Online].
Available: https://lipn.univ-paris13.fr/∼coti/papiers/iwgcr2014.pdf

[54] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, “Network
planning with deep reinforcement learning,” in Proc. ACM SIGCOMM
Conf., 2021, pp. 258–271.

[55] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, Feb. 2020.

Yue Zeng received the MS degree from the de-
partment of electronic information engineering from
Southwest University, Chongqing, China, in 2019.
He is currently working toward the PhD degree with
the department of computer science and technology
in Nanjing University, China. His research interests
include network functions virtualization, software de-
fined networking, machine learning for networking,
distributed computing, and edge computing.

Zhihao Qu (Member, IEEE) received the BS and PhD
degree in computer science from Nanjing University,
Nanjing, China, in 2009, and 2018, respectively. He
is currently an associate professor with the College of
Computer and Information at Hohai University. His
research interests are mainly in the areas of wireless
networks, edge computing, and distributed machine
learning.

Song Guo (Fellow, IEEE) is currently a full professor
with the Department of Computing, The Hong Kong
Polytechnic University. He is also the Changjiang
chair professor awarded by the Ministry of Education
of China. His research interests include edge AI,
mobile computing, and distributed systems. He has
been recognized as a highly cited researcher (Web of
Science) and was the recipient of more than 14 best
paper awards from IEEE/ACM conferences, journals,
and technical committees. He is the editor-in-chief of
the IEEE Open Journal of the Computer Society. He

was on the IEEE Communications Society Board of Governors, IEEE Computer
Society Fellow Evaluation Committee, and editorial board of a number of
prestigious international journals, including IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Cloud Computing, and IEEE Internet
of Things Journal.

Bin Tang (Member, IEEE) received the BS and PhD
degrees in computer science from Nanjing University,
Nanjing, China, in 2007, and 2014, respectively. He
was an assistant researcher with Nanjing University
from 2014 to 2020, and also a research fellow with
The Hong Kong Polytechnic University in 2019. He
is currently a professor with Hohai University. His
research interests lie in the area of communications,
network coding, and distributed computing.

Baoliu Ye (Member, IEEE) received the PhD degree
in computer science from Nanjing University, China
in 2004. He is a full professor with the Department
of Computer Science and Technology, Nanjing Uni-
versity. He served as a visiting researcher of the
University of Aizu, Japan from 2005 to 2006, and the
dean of School of Computer and Information, Hohai
University since 2018. His current research interests
mainly include distributed systems, cloud computing,
wireless networks with more than 70 papers published
in major conferences and journals. He served as the

TPC co-chair of HotPOST12, Hot-POST11, P2PNet10. He is the regent of CCF,
the secretary-general of CCF Technical Committee of Distributed Computing
and Systems.

Jing Li (Member, IEEE) received the BSc and PhD
degrees with the first class Honours from The Aus-
tralian National University in 2022 and 2018, re-
spectively. He is currently a postdoctoral fellow with
The Hong Kong Polytechnic University. His research
interests include mobile edge computing, Internet of
Things, network function virtualization, and combi-
natorial optimization. He has published papers in top
journals and conferences such as IEEE Transactions
on Mobile Computing, IEEE Transactions on Parallel
and Distributed Systems, ACM Transactions on Sen-

sor Networks, and IEEE ICDCS.

Jie Zhang (Member, IEEE) is currently working
toward the PhD degree with the Department of Com-
puting, The Hong Kong Polytechnic University. Her
current research interests include edge computing,
federated learning, and deep reinforcement learning.

Authorized licensed use limited to: Nanjing University. Downloaded on October 24,2023 at 11:07:58 UTC from IEEE Xplore. Restrictions apply.

https://datatracker.ietf.org/doc/pdf/draft-ietf-sfc-use-case-mobility-09
https://www.cs.yale.edu/homes/aspnes/pinewiki/ApproximationAlgorithms.html?highlight=%8CategoryAlgorithmNotes%29
https://www.cs.yale.edu/homes/aspnes/pinewiki/ApproximationAlgorithms.html?highlight=%8CategoryAlgorithmNotes%29
https://www.cs.yale.edu/homes/aspnes/pinewiki/ApproximationAlgorithms.html?highlight=%8CategoryAlgorithmNotes%29
https://github.com/alibaba/clusterdata
https://lipn.univ-paris13.fr/~coti/papiers/iwgcr2014.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

